
R Basics
Marco Torchiano

Version 1.1.0 - March 2021

License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

You are free to:

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Share - copy and redistribute the material in any medium or format

Adapt - remix, transform, and build upon the material

-

-

Attribution - You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

ShareAlike - If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

-

-

2

Introduction

What is R?

http://cran.r-project.org/

R is a free software environment for statistical computing
and graphics.
Available on several different platform

4

Basic features

CLI

Scripts

Extensive help system https://www.rseek.org/

Large resource set online https://stackoverflow.com/

Command Line Interface

Immediate evaluation of expression

-

-

5

IDE

Several graphical front-ends (GUI)

RStudio is a full IDE for R

http://www.rstudio.com

Also cloud version: https://rstudio.cloud

6

R Console

Basic text based REPL

Objects are stored in a common environment

Read: from the user keyboard

Evaluate the R language expression

Print the result of the evaluation

Loop

Or from a script-

Until quit()-

7

R environment

Shared global memory space where all objects stored

Can be inspected at any time

Every time a command assign a value to a variable, it is
placed inside the environment

All valuee in the environment are available to any later
statement

Variables

Functions

-

-

8

R script

A text file containing commands intended to be
executed as a whole

It is possible to execute the statements one by one

Execution means taking a statement from the script
instead of reading it from the keyboard

The result is the same-

Accesses the global environment-

9

R package

Library of functions designed to work together

Can be installed from R official repository (CRAN)

Must be loaded before use

Include documentation-

From CLI: install.packages("ggplot2")

From GUI: Tools > Install packages…

-

-

library("ggplot2")-

10

R help

All built-in and package functions are documented

Help system is integrated in

Console

R Studio

-

Help on function ? log

Search for topic: ?? logarithm

-

-

-

Help pane-

11

R Language

R elements

Statements

Functions

Variables

Data types

assignment

expression

control

-

-

-

Primitive

Compound

-

-

13

Statements

Statements can be terminated by

a new-line : most common

a ;

to avoid ambiguities

to put multiple statements on a single line

-

-

14

Comments

On any line from # until end of line is considered
comments. Typical usage:

as first caracter: comment line

after statement: comment specific statement

#--------------- Define constants --------------
#
PI <- 7/22 # a reasonable approximation

15

Assignment

The global environment stores objects, e.g. values

Operator <- is used to store an object with a name

Variables are not typed

answer <- "fortytwo"

i.e. you can (re-)assign any type of value

answer <- 42

16

Assignment

Assignment operator <- copies the value of an
expression into the environment and assign a name

An assignment overwrites the value previously linked to
that name

Operator = can be used instead

Non recommended to avoid confusion

Be careful with names

17

Names

Variable names

Style recommendations:

Must start with a letter,

Can’t contain spaces

-

-

Use lowercase characters

Use an underscore (_) to separate words

Avoid using names that are predefined

-

-

-

18

Expression

When an expression is entered, R evaluates it and
prints the result

Uses the names to retrieve values from the
environment

answer

[1] 42

it is possible to explicitly force printing an expression
with print()

print((answer / 3) %% 11)

[1] 3 19

Primitive types

numeric

integer

Default type (also for integer values)

Uses standard IEEE-754 (ISO/IEC 60559)

E.g., 1.2 , 1-

Used to force integer arithmetic

Suffix letter “L” to force integer

E.g., 42L-

20

Primitive types

complex

logical

Allow complex number operations

sqrt(-1 + 0i)

[1] 0+1i

Keywords: TRUE | FALSE

Also predefined variables: T and F

21

Primitive types

character

String of characters

Can be described using both

'single' and

"double" quotes

-

-

22

Data types

Type-related functions:

Type of variable: class(x)

Check type: is. type (x)

Conversion: as. type (x)

23

Special values

NA : is generally interpreted as a missing, does not exist

NULL : is for empty object

NaN : the result is not a number, e.g. log(-1)

Inf numeric infinity , e.g. 1/0

Stands for Not Available

tested with is.na()

-

-

tested with is.null()-

Stands for Not-a-N

tested with is.nan()

-

-

∞
24

Operators

Arithmetic on numeric: + , - , * , / , ^

Comparison: == , != , < , <= , > , >=

integer %% (modulo)-

works also on strings-

25

Character operations

nchar() : lenght of the string

paste(..., sep=" ") : concatenates with separator

paste0(...) : no separator, i.e. sep=""-

nchar("Visualization")

[1] 13

paste("Visualization","of","Quantitative","Information"

[1] "Visualization of Quantitative Information"

26

Character operations

substr() : extract and replaces portion of a string

title <- "Visualization of Quantitative Information"
substr(title, 15, 16)

[1] "of"

substr(title, 15, 16) <- "OF"
title

[1] "Visualization OF Quantitative Information"

27

Block statements

A series of statements can be gathered in a block using
the { … } syntax.

Block statement are used as branches or bodies of
structured control statements.

they are treated as a single (compound) statement

non new environment is created

28

Control statements

if(cond) .. else

while(cond)

for(var in seq)

29

Conditional

Use the usual syntax: if(cond) … else …

else clause is optional

a <- 10
if(a < 0){
"negative"

}else{
"positive"

}

[1] "positive"

30

While loop

Use the while(cond) … syntax

a <- 10
while(a > 1){
 print(a)
 a <- a / 2;
}

[1] 10
[1] 5
[1] 2.5
[1] 1.25

31

Functions definition

Using the keyword function

Can provide default values:

percentage <- function(part,whole){
 part/whole*100
}

return evaluation of last expression

or can use return() statement

percentage <- function(part=1, whole=1){
return(part/whole*100)

}

32

Function invocation

Usual invocation (positional)

Named arguments:

Leverage default values:

percentage(3, 4)

[1] 75

percentage(whole=4, part=3)

[1] 75

percentage(part=0.75)

[1] 75 33

Exercise 1

Define a function pythagoras() accepting three values
(a,b,c) one of which can be missing and is computed using
the Pythagorean theorem.

pythagoras(3,4)

[1] 5

pythagoras(c=5,a=3)

[1] 4

34

Vectors

Vectors

All values in R are considered as vectors

When printed

All elements in a vector must have the same type

Possibly with dimension 1 for scalar values-

if spread on many lines, the index of the first
element printed on the line is shown in []

for a scalar, [1] is shown indicating the index of
the first and only element

-

-

Type coercion can be applied-

36

Vector creation

With combine function c() by enumeration of elements

With vector() function, with type and length, creates
a zero-ed vector

v <- c(2,4,5)

Remember also scalars are vector: 1 == c(1)-

w <- vector("numeric",3)
w

[1] 0 0 0

37

Ranges

Range operator : generates an integer vector

1:3

[1] 1 2 3

equivalent to

c(1L, 2L, 3L)

[1] 1 2 3

38

Vector operations

Merging:

Length with function length()

c(1:3, 7:9)

[1] 1 2 3 7 8 9

Type coercion can be applied-

length(1:10)

[1] 10

39

Vector operations

Arithmetic operators

Pair-wise on same-index elements

Recycling if different size

1:3 + 3:1

[1] 4 4 4

1:3 + 1

[1] 2 3 4

Longest length must be multiple of shortest-

40

Empty vectors

Using primitive types function to create empty (typed)
vectors

empty_numeric <- vector("numeric",0)
length(empty_numeric)

[1] 0

empty_numeric

numeric(0)

The combine function without arguments gives NULL

The reason is that no type is specified-
41

Vector access

In R, indexes start at 1!!!

Operator []

Uses an index to access an element

s = c("aa", "bb", "cc", "dd", "ee")
s[1]

[1] "aa"

42

Vector access

With index 0 returns an empty vector

Out of bound returns NA

s[0]

character(0)

s[6]

[1] NA

43

Vector slicing

Slicing allows extracting a subset of the vector elements

Using a vector of indexes

Indexes can be repeated

s[c(1,3)]

[1] "aa" "cc"

s[c(5,1,1)]

[1] "ee" "aa" "aa"

44

Vector slicing

Using a vector of logicals

l <- c(TRUE, FALSE, FALSE, FALSE, TRUE)
s[l]

[1] "aa" "ee"

45

For-Loops

For-loop sintax: for(variableinvector)

in each iteration the variable will assume all the
consecutive values in the vector .

min <- 100;
for(d in c(7,2,5,10,20,12,3)){
if(d < min)

 min <- d
}
min

[1] 2

46

For-Loops

Iteration on a vector can be implemented also with an
index over a range

min <- 100;
numbers <- c(7,2,5,10,20,12,3)
for(i in 1:length(numbers)){
if(numbers[i] < min)

 min <- numbers[i]
}
min

[1] 2

47

Loop control

break : steps out of the loop skipp rest of body

next : skips remaining of the body and start new
iteration

48

Named vectors

Elements of a vector can be named

When printed, names are reported above the values

days<-c(Jan=31, Feb=28, Mar=31, Apr=30, May=31, Jun
 Jul=31, Aug=31, Sep=30, Oct=31, Nov=30, Dec

days

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
31 28 31 30 31 30 31 31 30 31 30 31

49

Named vectors

Names can be used instead of indexes

Also for slicing purposes

days["Feb"]

Feb
28

days[c("Feb","Dec")]

Feb Dec
28 31

50

Named vectors

Function names() access names

Allows getting and setting names

names(days)

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug"
[9] "Sep" "Oct" "Nov" "Dec"

triplet <- 1:3
names(triplet) <- c("one","two","three")
triplet

one two three
1 2 3

51

Exercise 2

Modify the pythagoras() function so that it returns a
vector with three elements named ‘a’, ‘b’, and ‘c’ according
to the Pythagorean theorem.

pythagoras(3,4)

a b c
3 4 5

pythagoras(c=5,a=4)

a b c
4 3 5

52

Character vector

strsplit(s, split) : creates a a list of vectors of
strings by splittig at given separator

strsplit(title, " ")

[[1]]
[1] "Visualization" "OF" "Quantitative"
[4] "Information"

53

Character vector

Function paste(..., sep=" ", collapse) :

first concatenates strings at corresponding indexes
(w/recycling) with separator

then concatenates elements of the resulting vector

paste(1:3,c("one","two","three"),".")

[1] "1 one ." "2 two ." "3 three ."

paste(1:3,c("one","two","three"),".", collapse=" - ")

[1] "1 one . - 2 two . - 3 three ."

54

Sequences

Function seq(from,to,by,lenght.out) allows different
combination of arguments

seq(1,10) # by=1

[1] 1 2 3 4 5 6 7 8 9 10

seq(1,10,by=3)

[1] 1 4 7 10

seq(1,10,length.out=4)

[1] 1 4 7 10

seq(1,length.out=10) # by=1 55

Type coercion

When putting values of different type in the same vector
they are (silently) coerced to the same type

the most general type among the elements is used

character > complex > numeric > integer >
logical

c(3, "two", TRUE)

[1] "3" "two" "TRUE"

c(22/7, 42L, FALSE)

[1] 3.142857 42.000000 0.000000
56

Type coercion

Coercion is performed using the conversion functions
as. type ()

Not always conversion is possible, in such cases NA is
produced

as.numeric(c("1","b","3.2"))

Warning: NAs introduced by coercion

[1] 1.0 NA 3.2

as.logical(c("true","FALSE","T","V","0"))

[1] TRUE FALSE TRUE NA NA
57

Logical to Numeric

When summing, logicals are coerced to integers

TRUE 1, FALSE 0→ →

thirty <- days == 30
thirty

Jan Feb Mar Apr May Jun Jul Aug Sep
FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE
Oct Nov Dec
FALSE TRUE FALSE

sum(thirty) # how many (coercion: T->1 F->0)

[1] 4
58

Filtering vectors with logicals

names(days)[thirty]

[1] "Apr" "Jun" "Sep" "Nov"

59

Filtering vectors with indexes

Function which() returns indexes of element satisfying
condition (==TRUE)

thirty.ix <- which(days==30)
thirty.ix

Apr Jun Sep Nov
4 6 9 11

names(days)[thirty.ix]

[1] "Apr" "Jun" "Sep" "Nov"

60

Sorting

Data in a vector can be sorted using function sort()

Note: the original array is not modified

numbers <- c(3, 7, 14, 2, 5, 8)
sort(numbers)

[1] 2 3 5 7 8 14

words <- c("There", "must", "be", "some", "kind",
"of", "way", "out", "of", "here")

sort(words)

[1] "be" "here" "kind" "must" "of" "of"
[7] "out" "some" "There" "way"

61

Ordering the indexes

Function order() sorts the indexes based on the value of
the corresponding elements

the first element of the result contains the index of the
smallest element

slicing with the ordered indexes gives a sorted vector

order(numbers)

[1] 4 1 5 2 6 3

numbers[order(numbers)] # slicing in order

[1] 2 3 5 7 8 14
62

Ranking

Function rank() computes the ranks of the
corresponding elements

r <- rank(numbers)
names(r) <- numbers
r

3 7 14 2 5 8
2 4 6 1 3 5

63

Matching

Operator %in% finds which element of left-hand vector
are present in the right-hand one.

c("John","Jane","Mike","Iris") %in% c("Jane","Iris","Sam"

[1] FALSE TRUE FALSE TRUE

64

Vectorization

Often it is useful to apply a function to all elements in a
vector

A vectorized function is one that can apply the same
operation to all elements of it argument

It is much easier to use and more efficient

Most builtin functions are vectorized

65

Vectorization vs. loops

Specific functions are not always vectorized

score_to_grade <- function(score){
if(score<17.5) "Failed"
else if(score>=30.5) "30L"
else round(score)

}
scores <-c(15,24.3,32,27.5)
score_to_grade(scores)

Warning in if (score < 17.5) "Failed" else if (score >=
30.5) "30L" else round(score): the condition has length
> 1 and only the first element will be used

[1] "Failed"
66

Vectorization vs. loops

A loop can be used to apply to all elements

grades <- numeric(length(scores))
for(i in 1:length(grades)){
 grades[i] = score_to_grade(scores[i])
}
grades

[1] "Failed" "24" "30L" "28"

67

Vectorization functionals

A functional is a function that applies another function

Functional sapply():

takes a vector and a function

applies the function to all elements of the vector

collects the results into a vector

grades <- sapply(scores,score_to_grade)
grades

[1] "Failed" "24" "30L" "28"

68

Composed data types

Matrix

Construction:

matrix(1:9, 3, 3)

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

A <- matrix(1:9, 3, 3, byrow=TRUE); A

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

70

Matrix indexing

Indexes start at 1, like vectors.

A[2, 3] # single cell

[1] 6

A[2,] # row

[1] 4 5 6

A[, 3] # column

[1] 3 6 9

71

Matrix indexing

A[2,3] <- 66; A

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 66
[3,] 7 8 9

72

Matrix transposition

B <- t(A); B

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 66 9

73

Matrix Composition

cbind(A,B) # column-wise

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 1 4 7
[2,] 4 5 66 2 5 8
[3,] 7 8 9 3 66 9

rbind(A,B) # row-wise

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 66
[3,] 7 8 9
[4,] 1 4 7
[5,] 2 5 8
[6,] 3 66 9 74

List

An array whose element can be of different types

Construction:

both primitive and compound types

l <- list(c(1,2),"a"); l

[[1]]
[1] 1 2

[[2]]
[1] "a"

75

List named members

Usually list members are named

l <- list(n=c(1,2), char="a") ; l

$n
[1] 1 2

$char
[1] "a"

names(l)

[1] "n" "char"

76

List access

Access to a member uses the accessor operator $, or the
element indexing operator [[.

l$n; l[["n"]] ; l[[1]]

[1] 1 2

[1] 1 2

[1] 1 2

77

List access

Access operators can be used to change and existing
element or to add a new one if the name is not present

l$char = "B"
l$logicals = c(TRUE, FALSE, TRUE)
l

$n
[1] 1 2

$char
[1] "B"

$logicals
[1] TRUE FALSE TRUE

78

List slicing

Slicing return a subset of the list:

Indexing returns the element

l[2]

$char
[1] "B"

l[[2]]

[1] "B"

79

Exercise 3

Modify the pythagoras() function so that it accepts a list
with two elements named ‘a’, ‘b’, or ‘c’ and computes the
missing one, according to the Pythagorean theorem.

pythagoras.list(list(a=3,b=4))

$a
[1] 3

$b
[1] 4

$c
[1] 5

80

Factor

Represent nominal variables

Internally stored as integer vector

created using the factor() function

f = factor(c("Red", "Green", "Blue", "Blue",
"Red", "Red"))

f

[1] Red Green Blue Blue Red Red
Levels: Blue Green Red

81

Factor

Levels:

Frequencies:

levels(f)

[1] "Blue" "Green" "Red"

table(f)

f
Blue Green Red
2 1 3

82

Ordered factors

f = factor(c("L", "M", "L", "H", "L", "H", "L"),
 levels=c("L","M","H"), ordered=T)
f

[1] L M L H L H L
Levels: L < M < H

83

Dataframe

It is the main data structure used to represent tabular
datasets.

Most data is processed in the form of dataframes

Most I/O of data handle dataframes

It is a list of vectors of equal length

Typical semantic

each row is case or observation

each column is an attribute or variable

-

-

84

Dataframe

Construction:

courses <- data.frame(
 code = c("15AHM","12BHD","16ACF",

"01PNN", "01RKC","17AXO"),
 course= c("Chemistry","Computer science","Calculus I"

"Free Credits","Linear Algebra","Physics I"
 semester = c(1,1,1,2,2,2),
 credits = c(8,8,10,6,10,10)
)

85

Dataframe example

code course semester credits

15AHM Chemistry 1 8

12BHD Computer science 1 8

16ACF Calculus I 1 10

01PNN Free Credits 2 6

01RKC Linear Algebra 2 10

17AXO Physics I 2 10

86

Dataframe indexing

Column (attribute/variable) selection is usually performed
with the accessor operator $

list-specific syntax can be used also

courses$credits; courses[[4]]; courses[["credits"]]

[1] 8 8 10 6 10 10

[1] 8 8 10 6 10 10

[1] 8 8 10 6 10 10

87

Dataframe indexing and slicing

Cell indexing is similar to matrixes

Dataframe slicing works like lists

courses[2,2]

[1] "Computer science"

courses[c("semester", "credits")]

semester credits
1 1 8
2 1 8
3 1 10
4 2 6
5 2 10
6 2 10 88

Slicing dataframe by row

courses[c(1,3,6) ,]

code course semester credits
1 15AHM Chemistry 1 8
3 16ACF Calculus I 1 10
6 17AXO Physics I 2 10

89

Sorting a dataframe

Order and slice

ord <- order(- courses$credits) # - means descending
courses[ord,]

code course semester credits
3 16ACF Calculus I 1 10
5 01RKC Linear Algebra 2 10
6 17AXO Physics I 2 10
1 15AHM Chemistry 1 8
2 12BHD Computer science 1 8
4 01PNN Free Credits 2 6

90

Filtering a dataframe with logicals

Use a logical indicator vector (TRUE for matching rows)

sem.2nd.ind <- courses$semester == 2
sem.2nd.ind ## which courses are in 2nd semester

[1] FALSE FALSE FALSE TRUE TRUE TRUE

courses.2nd <- courses[sem.2nd.ind,]
courses.2nd ##2nd semester courses

code course semester credits
4 01PNN Free Credits 2 6
5 01RKC Linear Algebra 2 10
6 17AXO Physics I 2 10

91

Filtering and summing

sum(courses.2nd$credits) ## 2nd semester credits

[1] 26

sum(sem.2nd.ind) ## how many courses in 2nd semester

[1] 3

92

Filtering a dataframe with indexes

Use a the function which()

sem.2nd.ix <- which(courses$semester == 2)
sem.2nd.ix ## indexes of courses are in 2nd semester

[1] 4 5 6

courses.2nd <- courses[sem.2nd.ix,]
courses.2nd ##2nd semester courses

code course semester credits
4 01PNN Free Credits 2 6
5 01RKC Linear Algebra 2 10
6 17AXO Physics I 2 10

93

Reading files

Functions read.*

Read data from a file into dataframe

Space separated: read.table()

CSV: read.csv()

Clipboard: read.table(pipe(…))

Excel file: read.xlsx()

X11: "clipboard"

OS X: "pbpaste"

-

-

require library(readxl)-
94

R Advantages

R is a common tool among data experts, supported
wildly by both professional and academic developers

R can be installed in any environment on any machine
and used with no licensing or agreements needed

R source code is flexible and can be adapted to specific
local needs

R can build routines straight out of a database for
common and universal reporting

95

R Limitations

R is based on S, which is close to 40 years old

R only has features that the community contributes

Not the ideal solution to all problems

R is a programming language and not a software
package – steeper learning curve

R can be much slower than compiled languages

96

Software

R

R-Studio Desktop

Download at: https://cran.r-project.org-

Download at: https://rstudio.com/products
/rstudio/

-

97

References

R. Irizarry. “Introduction to Data Science - Data Analysis
and Prediction Algorithms with R”

H.Wickham, G.Grolemund. “R for Data Science -
Visualize, model, transform, tidy, and import data”,
O’Reilly, 2017

https://rafalab.github.io/dsbook/-

https://r4ds.had.co.nz/index.html-

98

Solutions

Solution to Exercise 1

Define a function pythagoras() accepting three values
(a,b,c) one of which can be missing and is computed using
the Pythagorean theorem.

pythagoras <- function(a=NULL, b=NULL, c=NULL){
if(is.null(a)){

 sqrt(c^2-b^2)
}else if(is.null(b)){

 sqrt(c^2-a^2)
}else if(is.null(c)){

 sqrt(a^2+b^2)
}

}

100

Solution to Exercise 2

Modify the pythagoras() function so that it returns a
vector with three elements named ‘a’, ‘b’, and ‘c’ according
to the Pythagorean theorem.

pythagoras <- function(a=NULL, b=NULL, c=NULL){
 nn <- is.null(a) + is.null(b) + is.null(c)
if(nn!=1) stop("Exactly one among 'a', 'b', 'c' must be missing"
if(is.null(a)){

 c(a=sqrt(c^2-b^2), b=b, c=c)
}else if(is.null(b)){

 c(a=a, b=sqrt(c^2-a^2), c=c)
}else if(is.null(c)){

 c(a=a, b=b, c=sqrt(a^2+b^2))
}

}
101

Solution to Exercise 3

Modify the pythagoras() function so that it accepts a list
with two elements named ‘a’, ‘b’, or ‘c’ and computes the
missing one, according to the Pythagorean theorem.

pythagoras.list <- function(edges){
 edge_names <- c("a","b","c")
 edges_provided <- edge_names %in% names(edges)
if(sum(edges_provided)!=2) stop("Wrong argument")
if(! "a" %in% names(edges)){

 edges$a <- sqrt(edges$c^2-edges$b^2)
}else if(! "b" %in% names(edges)){

 edges$b <- sqrt(edges$c^2-edges$a^2)
}else if(! "c" %in% names(edges)){

 edges$c <- sqrt(edges$a^2+edges$b^2)
}

 edges
}

102

