Visual perception

Visualizzazione dell'Informazione Quantitativa

http://softeng.polito.it/courses/VIQ

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/4.0/.

You are free: to copy, distribute, display, and perform the work

Under the following conditions:

- Attribution. You must attribute the work in the manner specified by the author or licensor.
- Non-commercial. You may not use this work for commercial purposes.
 - **No Derivative Works**. You may not alter, transform, or build upon this work.
 - For any reuse or distribution, you must make clear to others the license terms of this work.
 - Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

VISUALIZATION PIPELINE

3

Visualization Pipeline

Knowledge

Decisions

Information Understanding

Visual Patterns, Trends, Exceptions

Quantitative Reasoning

Quantitative Relationship & Comparison

Visual Perception

Visual Properties & Objects

Data

Representation/Encoding

Visual Perception

- Any variable (measure) must be visually encoded, i.e. we need to identify:
 - Visual object to represent entity
 - ◆ Visual attribute to represent the measure

5

Example

Votes received by four candidates in recent elections

Candidate	Votes	Proportion
Sergio	197800	50.09%
Alberto	140545	35.59%
Giorgio	53748	13.61%
Valter	2759	0.70%

http://www.comune.torino.it/elezioni/2019/regionali/presidente/citta/

Encoding

- Visual object: line
- Visual attribute: length

```
- Giorgio
Valter
Sergio
```

7

Visual Reasoning

Layout and visual attributes allow:

- Discrimination
 - Distinguish visual objects or group of -
- Comparison
 - Place visual objects in order
- Magnitude assessment
 - Evaluate the (relative)
 magnitude of visual objects

Reasoning

9

Reasoning

Discrimination

Alberto
Valter Giorgio _____
Sergio____

Reasoning

Comparison

11

Reasoning

Assessment

Understanding

- Variation within quantitative measures
 - Distribution
 - Deviation
 - Correlation
- Variation within category
 - Ranking
 - ◆ Part-to-whole
 - Time
 - Space
- Multivariate

13

Understanding

Understanding

Ranking

15

VISUAL PERCEPTION

Data Visualization

Visual perception

Memory Hierarchy

- Iconic memory (visual sensory register)
 - ◆ Pre-attentive processing
 - Detects a limited number of attributes
- Short-term memory (working memory)
 - Store visual chunks
 - Limited number
- Long-term memory
 - ◆ Store high-level knowledge

19

Simplified Model

- The three levels of memory represent a simplified model
 - does not correspond to "real" physical structure
- Useful to explain a few phenomena
 - ◆ The 7 ± 2 rule
 - Change blindness

Change blindness

http://www2.psych.ubc.ca/~rensink/flicker/download/index.html

21

Pre-Attentive Attributes

```
5 7 8 4 9 8 3 1 1 0 6 8 8 2 1 1 5 2 6 6 5 9 5 1 8 4 6 8 4 9 3 0 4 5 3 4 9 2 5 8 5 8 5 8 5 0 5 4 6 2 6 5 7 3 7 8 6 5 3 7 2 6 3 1 5 5 8 6 6 8 3 7 6 5 0 9 6 3 4 6 1 9 5 6 6 4 1 6 7 3 9 9 2 8 3 4 0 3 5 1 6 3 5 3 9 3 4 8 6 9 7 5 4 2 4 7 4 9 5 8 5 3 0 7 6 0 6 7 0 3 1 5 3 2 3 5 6 7 2 8 9 8 5 3 7 8 8 2 4 5 5 3 4 8 1 5 6 2 3 5 5 1 2 1 0 8 7 2 6 3 7 4 3 8 4 8 2 6 7 9 5 6 2 3 6 7 8 0 8 3 6 4 9 5 6 7 2 2 2 8 3 1 1 0 1 8 6 2 6 2 1 4
```

Pre-Attentive Attributes

```
5 7 8 4 9 8 3 1 1 0 6 8 8 2 1 1 5 2 6 6 5 9 5 1 8 4 6 8 4 9 3 0 4 5 3 4 9 2 5 8 5 8 5 8 5 0 5 4 6 2 6 5 7 3 7 8 6 5 3 7 2 6 3 1 5 5 8 6 6 8 3 7 6 5 0 9 6 3 4 6 1 9 5 6 6 4 1 6 7 3 9 9 2 8 3 4 0 3 5 1 6 3 5 3 9 3 4 8 6 9 7 5 4 2 4 7 4 9 5 8 5 3 0 7 6 0 6 7 0 3 1 5 3 2 3 5 6 7 2 8 9 8 5 3 7 8 8 2 4 5 5 3 4 8 1 5 6 2 3 5 5 1 2 1 0 8 7 2 6 3 7 4 3 8 4 8 2 6 7 9 5 6 2 3 6 7 8 0 8 3 6 4 9 5 6 7 2 2 2 8 3 1 1 0 1 8 6 2 6 2 1 4
```

23

Encoding

- Encoding is the key to enable visual perception
 - Visual object to represent entity
 - Visual attribute to represent the measure
- Two main types
 - Quantitative (different properties)
 - Categorical (ordinal or not)

Pre-Attentive attributes

Attribute
Orientation Length/distance Line width Size Shape Curvature Added marks Enclosure
Hue Intensity
2-D position
Flicker Direction Speed

Perception task

Visual attributes allow:

- Discrimination
 - Distinguish visual objects
- Comparison
 - Place visual objects in order
- Magnitude assessment
 - Evaluate the (relative) magnitude of visual objects

Just noticeable difference

- Given a phisical dimension (length, brightness, etc.) xx
- d is the just noticeable difference if:
 - difference between x and x+d is perceivable
 - but not smaller differences
- d depends on many factors:
 - Subject
 - Environment
 - Physical dimension

27

Weber's law

Just noticeable difference d is:

$$d_p(x) = k_p \cdot x$$

- Where
 - x: dimension
 - d₀(x): just noticeable difference
 - ♦ k_p: constant
 - Subjective
 - Environmental

Consequences of Weber's law

- It is easier to compare lengths that differ by a large percentage
- The same difference is easier to notice between smaller measures
 - More likely to be larger than just noticeable difference

$$x < y \implies d_p(x) < d_p(y)$$

29

Non-aligned objects lengths

Non-aligned objects lengths

- Additional references my help comparison
 - They provide alternative possible comparisons
- If lengths range between 0 and a maximum (L), e.g. percentages
- Comparing I₁ and I₂ (close to L) that differ by a small amount d
 - Difference $L-I_1$ vs. $L-I_2$ easier to notice than I_1 vs. I_2

31

Stevens's law

Perceive scale (magnitude ratio)

$$p(x) = c \cdot x^{\beta}$$

- Where β depends on spatial dimension
 - 1D: Length $\rightarrow \beta$ in [0.9, 1.1]
 - 2D: Area $\rightarrow \beta$ in [0.6, 0.9]
 - 3D: Volume $\rightarrow \beta$ in [0.5, 0.8]

Steven's law

Steven's law

Consequences

- Prefer comparing lengths
- Avoid comparison between areas
 - Except for ordinal measures
- Never-ever make volume comparisons

35

Attributes of form

Orientation (angle or slope)

37

В

b

Angle vs. Slope

- Slope of A–B is b/a
 - tan(α)

- \bullet Given an error ϵ in the angle judgment
- It is reflected in a slope error

$$tan(\alpha + \epsilon) - tan(\alpha) = \epsilon \cdot tan'(\alpha) = \frac{\epsilon}{cos^2(\alpha)}$$

– Getting infinite as α approaches to $\pi/2$

Shape

- There is no common quantitative semantics for the shapes
 - Unless they are characters...
 - Fill textures are shapes too

39

Length

Effect of context

41

Curvature

 There is no common magnitude assessment for the curvature

Width

- Order can be identified
 - ◆ Difficult to appreciate actual magnitude

43

Mark

- No common quantitative semantics of marks
- Number of marks could encode a natural number
 - Harder to read than a cipher

Size / Area

45

Enclosure

- No common quantitative semantics for enclosure
 - Except counting items enclosed

Spatial Position

- Position along axis
 - Common scale
 - Distinct identical scales
 - Possibly un-aligned

Distance

47

Position

A common scale

Position

Distance

- Points
 - Use length of imaginary connecting lines
- Lines
 - Distance orthogonal to tangent
 - Not what is meant in xy plots

Detection and Separation

Comparison is affected by:

- Detection
 - The capability to visually identify the objects that represent the data to be compared
- Separation
 - The distance between the objects to be compared
 - affects negatively the accuracy

51

Attributes of color

- HueSaturation
- Intensity
 - Luminance
 - Value

Hue

- There is no common ordering semantics for hues
 - High spatial frequencies are perceived through intensity changes
 - Often perceived as separated into bands of almost constant hue, with sharp transitions between hues
- Nominal values can be represented by suitably spaced values

53

Intensity

- ◆ a.k.a. Luminance, Value
- Provides a perceptually unambiguous ordering
 - Context can affect accuracy

Saturation

- Perceptually difficult to associate an ordered semantics
 - Can be combined with hue to increase discrimination

55

Effect of Context

Effect of Context

- Use uniform background
 - To make distinct visual objects for the same feature look the same
- Use a background color that is contrasting enough with the visual objects' color
 - To make visual objects easily seen
- Avoid non-uniform background

57

Color usage

- Ordinal measure should be mapped to increasing saturation and intensity
 - Avoid rainbow palette
- Use sequential or diverging palette
 - ◆ E.g.

- http://colorbrewer2.org/

Color Blindness

Inability so see colors or perceive color differences

http://www.color-blindness.com

59

Pre-Attentive attributes

Category	Attribute	Quantitative
Form	Orientation Length Line width Size Shape Curvature Added marks Enclosure	Partly Yes No Partly No No No
Color	Hue Intensity	No Limited
Spatial position	2-D position	Yes
Motion	Flicker Direction	No No

Visual Encoding: Quantitative

Object	Attribute
Point	Position (w.r.t. axis/axes)
Line	Length Position (w.r.t. axis/axes) Slope
Bar	Length
Shape	Size (area) Count

61

Visual Encoding: Categorical

VISUAL REASONING

63

Graph layout

Layout + visual attributes should allow:

- Discrimination
 - Distinguish visual objects or group of -
- Comparison
 - Place visual objects in order
- Magnitude assessment
 - Evaluate the (relative) magnitude of visual objects

 Visual features that lead the viewer to group visual objects together

Gestalt principles

- Visual patterns that lead observers to perceive objects together or separate
 - Proximity
 - Similarity
 - Enclosure
 - Closure
 - Continuity
 - Connection

- Visual patterns that lead observers to perceive objects together or separate
 - Proximity
 - Similarity
 - ◆ Enclosure
 - Closure
 - Continuity
 - Connection

67

Gestalt principles

- Visual patterns that lead observers to perceive objects together or separate
 - Proximity
 - Similarity
 - ◆ Enclosure
 - Closure
 - Continuity
 - Connection

.

- Visual patterns that lead observers to perceive objects together or separate
 - Proximity
 - Similarity
 - Enclosure
 - Closure
 - Continuity
 - Connection

69

Gestalt principles

- Visual patterns that lead observers to perceive objects together or separate
 - Proximity
 - Similarity
 - ◆ Enclosure
 - Closure
 - Continuity
 - Connection

- Visual patterns that lead observers to perceive objects together or separate
 - Proximity
 - Similarity
 - Enclosure
 - Closure
 - Continuity
 - Connection

71

Gestalt principles

- Visual patterns that lead observers to perceive objects together or separate
 - Proximity
 - Similarity
 - ◆ Enclosure
 - Closure
 - Continuity
 - Connection

Similarity in Shape & Color

73

Similarity+Connection

Similarity+Connection+Proximity

75

Similarity × Proximity

Similarity × Proximity & Enclosure

77

Continuity replaces axis

Distinct perceptions

- The immediacy of any pre-attentive cue declines as the variety of alternative patterns increases
 - Even if all the distracting patterns are individually distinct from the target
 - For each single attribute no more than four distinct levels are immediately discernible
 - This limit affects the similarity principle

79

Rainbow Pies

Attribute Interference

81

Attribute Interference

Cultural conventions

- Reading proceed from left to right and from top to bottom
 - * At least in western culture
- What is at the top (on the left) precedes what is at the bottom (on the right) in terms of
 - Importance
 - Ordering
 - Time

83

Emphasis

Attribute	Tables	Graphs
Line width	Boldface text	Thicker lines
Size	Bigger tables Larger fonts	Bigger graphs Wider bars Bigger symbols
Color intensity	Darker or brighter colors	
2-D position	Positioned at the top Positioned at the left Positioned in the center	

Visualizzazione dell'Informazione Quantitativa

VISUAL INTEGRITY

85

Principles of integrity

- Proportionality
 - Representation as physical quantities should be proportional to the represented numbers
- Utility
 - Graphical element should convey useful information
- Clarity
 - Labeling should counter graphical distortion and ambiguity

Proportionality

- The magnitude of visual attributes should represent faithfully the magnitude of measures
- They should allow
 - Discrimination: are they different?
 - Comparison: which is larger?
 - Magnitude Assessment: how much larger?

87

Lie Factor

$$LF = \frac{\text{size of effect shown in graphic}}{\text{size of effect in data}}$$

Lie Factor

$$LF = \frac{\text{size of effect shown in graphic}}{\text{size of effect in data}}$$

89

Lie Factor – Example

$$\frac{18.7}{2.2}$$
 = 8.5 on graphic $\frac{27.5}{18}$ = 1.52 in data

$$LF = 8.5 / 1.52 = 5.59$$

Lie Factor - Example

Lie Factor – Example

PUC

Debito pubblico (% PIL)

(*) previsioni Commissione UE

Lie Factor - Example

Debito pubblico (% PIL)

(*) previsioni Commissione UE

Lie Factor -Redesign

Debito Pubblico (% PIL)

Lie Factor - Redesign

Guidelines for design

- Keep the physical Lie Factor = 1
- Limit the perceptual Lie Factor as much as possible
 - ◆ Per Steven's law, avoid area comparisons

Utility

- Every element should convey useful information
- Unnecessary visual objects or attributes distract from the message
 - Different attributes trigger a search for a rationale (e.g. random colors)

97

Data-ink

Data-ink ratio =
$$\frac{\text{data ink}}{\text{total ink used to print the graphic}}$$

- Proportion of a graphic's ink devoted to the non-redundant display of data information
 - Or:
 - $1 \frac{\text{ink that can be erased without loss of information}}{\text{total ink used to print the graphic}}$

Data-ink

99

Data-ink

Data-ink

101

Data-ink

Guidelines for design

- Maximize data-ink ratio
 - Erase non-data-ink
 - Erase redundant data-ink
- "Within reason"

Above all else show the data

E.Tufte

103

Use of contrast

- Include differences corresponding to actual differences
- Effective when one item is different in a context of other items that are the same
 - Bright saturated color among mid colors

Chartjunk

 The presence of unnecessary elements that distract or hide the message conveyed by the diagram

105

Chartjunk

Nigel Holmes: http://nigelholmes.com

107

Clarity

- Visual encoding and layout should make perception tasks easy and effortless
- Textual and support elements should provide effective support to understanding the information
- Any variation in the graph should represent useful information otherwise it is noise obfuscating the message

Clarity

- Textual elements should provide effective support to understanding
 - Hierarchical
 - Size and position reflects importance
 - Readable
 - Large enough
 - Horizontal
 - Close to data (avoid legends)
- Always label the axes

109

Colors

- Get it right in black and white
- Use medium hues or pastels
 - Bright colors distract and tire out
- Use color only when needed to serve a particular communication goal

Cognitive Dissonance

111

Detection and Separation

Efficiency and efficacy of perception tasks is affected by:

Detection

The capability to visually identify the objects that represent the data to be compared

Separation

The distance between the objects to be compared

- affects negatively the accuracy

113

Example

Trends in employment rates of 25-34 with a tertiary degree

Analysis

Proportionality

 ◆ Due to non-zero base bars, it has a large lie factor (2.2):

- ratio of real values: 87.8 : 61.9

- ratio on graph: 37.8:11.9

Utility

- Most elements appear useful
- * X-axis ticks can be removed
- Y grid could be made less prominent

115

Analysis

Clarity

- It uses a dual scale that confuses and makes very hard a visual comparison of the values and further distorting the compared values.
- The dual scale is not mentioned anywhere and it is not clear which values refer to which scale.
- In general the usage of bars is not the most appropriate visual representation if the goal is to show a trend or evolution in time.

Redesign

Trends in employment rates of 25-34 with a tertiary degree

117

References

- D. Kahneman. Thinking, Fast and Slow. Penguin, 2011
- C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann Publishers, Inc., San Francisco, California, 2000
- C. Healey, and J. Enns. Attention and Visual Memory in Visualization and Computer Graphics. IEEE Transactions on Visualization and Computer Graphics, 18(7), 2012
- I. Inbar, N. Tractinsky and J.Meyer. Minimalism in information visualization: attitudes towards maximizing the data-ink ratio.
 - http://portal.acm.org/citation.cfm?id=1362587

References

- S.Few, "Practical Rules for Using Color in Charts"
 - http://www.perceptualedge.com/articles/visual_business_intelligence/rules_for_using_color.pdf
- D. Borland and R. M. Taylor Ii, "Rainbow Color Map (Still) Considered Harmful," in *IEEE Computer Graphics and Applications*, vol. 27, no. 2, pp. 14–17, March-April 2007.
 - http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber =4118486
- http://www.color-blindness.com
- http://www.csc.ncsu.edu/faculty/healey/PP/index.html

119