
Java Exceptions

Version 2.1 - May2013

© Maurizio Morisio, Marco Torchiano, 2013

Politecnico di Torino

2

Licensing Note
Attribution-NonCommercial-NoDerivs 2.5
!  You are free: to copy, distribute, display, and perform the work

Under the following conditions:
!  Attribution. You must attribute the work in the manner specified by

the author or licensor.

!  Noncommercial. You may not use this work for commercial

purposes.

!  No Derivative Works. You may not alter, transform, or build upon
this work.

!  For any reuse or distribution, you must make clear to others the

license terms of this work.
!  Any of these conditions can be waived if you get permission from the

copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license)

found at the end of this document

Politecnico di Torino

3

Motivation
!  Report errors, by delegating error handling

to higher levels
!  Callee might not know how to recover from

an error
!  Caller of a method can handle error in a

more appropriate way than the callee

!  Localize error handling code, by separating
it from functional code

!  Functional code is more readable
!  Error code is centralized, rather than being

scattered

Politecnico di Torino

4

The world without exceptions (I)
!  If a non locally remediable error

happens while method is executing,
call System.exit()

!  A method causing an unconditional
program interruption in not very
dependable (nor usable)

Politecnico di Torino

5

The world without exceptions (II)
!  If errors happen while method is executing,

we return a special value
!  Special values are different from normal

return value (e.g., null, -1, etc.)

!  Developer must remember value/meaning
of special values for each call to check for
errors

!  What if all values are normal?
♦  double pow(base, exponent)
♦  pow(-1, 0.5); //not a real

Politecnico di Torino

6

Real problems
!  Code is messier to write and harder to read

if(somefunc() == ERROR) // detect error
 //handle the error
else
 //proceed normally

!  Only the direct caller can intercept errors

(no delegation to any upward method)

Politecnico di Torino

7

Example – Read file
!  open the file
!  determine file size
!  allocate that much memory
!  read the file into memory
!  close the file

readFile()

(caller)

open ()

(callee) size()

(callee) alloc()

(callee) read()

(callee) close()

(callee)

All of them  
can fail

Politecnico di Torino

8

Correct (but boring)
int readFile {
 open the file;
 if (operationFailed)
 return -1;
 determine file size;
 if (operationFailed)
 return -2;
 allocate that much memory;
 if (operationFailed) {
 close the file;
 return -3;
 }
 read the file into memory;
 if (operationFailed) {
 close the file;
 return -4;
 }
 close the file;
 if (operationFailed)
 return -5;
 return 0;
}

Unreadable

Lots of  
error-detection and  
error-handling code

To detect errors we
must check specs of

library calls (no
homogeneity)

Politecnico di Torino

9

Wrong (but quick and readable)
int readFile {

 open the file;
 determine file size;
 allocate that much memory;
 read the file into memory;
 close the file;

 return 0;
}

Which one would YOU use ?

"

Politecnico di Torino

10

Using exceptions (nice)
try {
 open the file;
 determine file size;
 allocate that much memory;
 read the file into memory;
 close the file;
} catch (fileOpenFailed) {
 doSomething;
} catch (sizeDeterminationFailed) {
 doSomething;
} catch (memoryAllocationFailed) {
 doSomething;
} catch (readFailed) {
 doSomething;
} catch (fileCloseFailed) {
 doSomething;
}

Politecnico di Torino

11

Basic concepts
!  The code causing the error will generate

an exception
♦  Developers code
♦  Third-party library

!  At some point up in the hierarchy of
method invocations, a caller will intercept
and stop the exception

!  In between, methods can
♦  Ignore the exception (complete delegation)
♦  Intercept without stopping (partial delegation)

Politecnico di Torino

12

Syntax
!  Java provides three keywords

♦ Throw
� Generates an exception

♦ Try
� Contains code that may generate exceptions

♦ Catch
� Defines the error handler

!  We also need a new entity
♦ Exception class

Politecnico di Torino

13

Generation
1.  Declare an exception class
2.  Mark the method generating the

exception
3.  Create an exception object
4.  Throw upward the exception

Politecnico di Torino

14

Generation
// java.lang.Exception
public class EmptyStack extends Exception {
}

class Stack{
 public Object pop() throws EmptyStack {

 if(size == 0) {
 Exception e = new EmptyStack();
 throw e;
 }
 ...
 }
}

(1)

(2)

(3)

(4)

Politecnico di Torino

15

throws
!  Method interface must declare

exception type(s) generated within its
implementation (list with commas)

!  Either generated and thrown by
method, directly

!  Or generated by other methods called
within the method and not caught

Politecnico di Torino

16

throw
!  Execution of current method is

interrupted immediatelly
!  Catching phase starts

Politecnico di Torino

17

Interception
!  Catching exceptions generated in a code

portion

try {
 // in this piece of code some
 // exceptions may be generated
 stack.pop();
 ...
}
catch (StackEmpty e) {

 // error handling
 System.out.println(e);
 ...
}

Politecnico di Torino

18

Execution flow
!  open and close

can generate a
FileError

!  Suppose read
does not
generate
exceptions

System.out.print("Begin");

File f = new File(�foo.txt�);
try{
 f.open();
 f.read();
 f.close();
}catch(FileError fe){
 System.out.print("Error");
}

System.out.print("End");

Politecnico di Torino

19

Execution flow
!  No exception

generated System.out.print("Begin");

File f = new File(�foo.txt�);
try{
 f.open();
 f.read();
 f.close();
}catch(FileError fe){
 System.out.print("Error");
}

System.out.print("End");

Politecnico di Torino

20

Execution flow
!  open()

generates an
exception

!  read() and
close() are
skipped

System.out.print("Begin");

File f = new File(�foo.txt�);
try{
 f.open();
 f.read();
 f.close();
}catch(FileError fe){
 System.out.print("Error");
}

System.out.print("End");

Politecnico di Torino

21

Multiple catch
!  Capturing different types of exception

is possible with different catch blocks

try {
 ...
}
catch(StackEmpty se) {
 // here stack errors are handled
}
catch(IOException ioe) {
 // here all other IO problems are handled
}

Politecnico di Torino

22

Execution flow
!  open and close

can generate a
FileError

!  read can
generate a
IOError

System.out.print("Begin");

File f = new File(“foo.txt”);
try{
 f.open();
 f.read();
 f.close();
}catch(FileError fe){
 System.out.print(�File err�);
}catch(IOError ioe){
 System.out.print(�I/O err�);
}

System.out.print("End");

Politecnico di Torino

23

Execution flow
!  close fails
!  �File error� is

printed
!  Eventually

program
terminates 
with “End”

System.out.print("Begin");

File f = new File(“foo.txt”);
try{
 f.open();
 f.read();
 f.close();
}catch(FileError fe){
 System.out.print(�File err�);
}catch(IOError ioe){
 System.out.print(�I/O err�);
}

System.out.print("End");

Politecnico di Torino

24

Execution flow
!  read fails
!  �I/O error� is

printed
!  Eventually

program
terminates 
with “End”

System.out.print("Begin");

File f = new File(“foo.txt”);
try{
 f.open();
 f.read();
 f.close();
}catch(FileError fe){
 System.out.print(�File err�);
}catch(IOError ioe){
 System.out.print(�I/O err�);
}

System.out.print("End");

Politecnico di Torino

25

Matching rules
!  Only one handler is executed
!  The more specific handler is selected,

according to the exception type

!  Handlers must be ordered according
to their �generality�

Politecnico di Torino

26

Matching rules

Exception

Error FatalEx

FileErr IOErr
- general

+ general

Politecnico di Torino

27

Matching rules
class Error extends Exception{}
class IOErr extends Error{}
class FileErr extends Error{}
class FatalEx extends Exception{}

try{ /*…*/ }
catch(IOErr ioe){ /*…*/ }
catch(Error er){ /*…*/ }
catch(Exception ex){ /*…*/ }

- general

+ general

Politecnico di Torino

28

Matching rules
class Error extends Exception{}
class IOErr extends Error{}
class FileErr extends Error{}
class FatalEx extends Exception{}

try{ /*…*/ }
catch(IOErr ioe){ /*…*/ }
catch(Error er){ /*…*/ }
catch(Exception ex){ /*…*/ }

IOErr is
generated

Politecnico di Torino

29

Matching rules
class Error extends Exception{}
class IOErr extends Error{}
class FileErr extends Error{}
class FatalEx extends Exception{}

try{ /*…*/ }
catch(IOErr ioe){ /*…*/ }
catch(Error er){ /*…*/ }
catch(Exception ex){ /*…*/ }

Error or
FileErr is

generated

Politecnico di Torino

30

Matching rules
class Error extends Exception{}
class IOErr extends Error{}
class FileErr extends Error{}
class FatalEx extends Exception{}

try{ /*…*/ }
catch(IOErr ioe){ /*…*/ }
catch(Error er){ /*…*/ }
catch(Exception ex){ /*…*/ }

FatalEx is
generated

Politecnico di Torino

31

Nesting
!  Try/catch blocks can be nested
!  E.g. error handler may generate new

exceptions

!  try{ /* Do something */ }
catch(…){
 try { /* Log on file */ }
 catch(…){ /* Ignore */ }
}

Politecnico di Torino

32

Generate and catch
!  When calling code, which possibly

raises an exception, the caller can

♦  Catch
♦  Propagate
♦  Catch and re-throw

Politecnico di Torino

33

[1] Catch
class Dummy {
 public void foo(){
 try{
 FileReader f;
 f = new FileReader(“file.txt”);
 } catch (FileNotFound fnf) {
 // do something
 }
 }
}

Politecnico di Torino

34

[2] Propagate
class Dummy {

 public void foo() throws FileNotFound{
 FileReader f;
 f = new FileReader(“file.txt”);
 }

}

Politecnico di Torino

35

[2] Propagate (cont’d)

class Dummy {
 public void foo() throws FileNotFound {
 FileReader f = new FileReader(“file.txt”);
 }
} class Program {

 public static
 void main(String args[]) throws FileNotFound {
 Dummy d = new Dummy();
 d.foo();
}

!  Exception not caught can be propagated till
main() and VM

Politecnico di Torino

36

[3] Re-throw
class Dummy {
 public void foo() throws FileNotFound{
 try{
 FileReader f;
 f = new FileReader(“file.txt”);
 } catch (FileNotFound fnf) {
 // handle fnf, e.g., print it
 throw fnf;
 }
 }
}

Politecnico di Torino

37

unchecked

unchecked

Exceptions hierarchy

Object

Throwable

Error Exception

Runtime  
Exception

checked

Internal Error,
Hard failure in
VM (e.g. out of

memory)

Programming error
(e.g. null pointer, out
of bounds, cast error)

Politecnico di Torino

Exception classes - examples
•  Error

•  OutOfMemoryError
•  Exception

•  ClassNotFoundException
•  InstantiationException
•  NoSuchMethodException
•  IllegalAccessException
•  NegativeArraySizeException
•  EmptyStackException

•  RuntimeException
•  NullPointerException

Politecnico di Torino

39

Custom exceptions
!  It is possible to define new types of

exceptions
!  If the ones provided by the system are

not enough…
!  Just sub-classing Throwable or one of

its descendants

Politecnico di Torino

40

Checked and unchecked
!  Unchecked exceptions

♦ Their generation is not foreseen (can
happen everywhere)

♦ Need not to be declared (not checked by
the compiler)

♦ Generated by JVM
!  Checked exceptions

♦ Exceptions declared and checked
♦ Generated with “throw”

Politecnico di Torino

41

finally
!  The keyword finally allows specifying

actions that must be always executed
♦ Dispose resources
♦ Close a file

MyFile f = new MyFile();
if (f.open(“myfile.txt")) {
 try {
 exceptionalMethod();
 } finally {
 f.close();
 }
}

After all  
catch branches  

(if any)

Politecnico di Torino

Exceptions and loops (I)
!  For errors affecting a single iteration, the

try-catch blocks is nested in the loop.
!  In case of exception the execution goes to

the catch block and then proceed with the
next iteration.

while(true){
 try{
 // potential exceptions
 }catch(AnException e){
 // handle the anomaly
 }
}

Politecnico di Torino

Exceptions and loops (II)
!  For serious errors compromising the whole

loop the loop is nested within the try block.
!  In case of exception the execution goes to

the catch block, thus exiting the loop.
try{
 while(true){
 // potential exceptions

 }
}catch(AnException e){
 // print error message

}

Politecnico di Torino

Testing exceptions
! Two main cases shall be checked:
! We expect an anomaly and therefore an

exception should be rised
#  In this case the tests fails whether NO exception

is detected
! We expect a normal behavior and therefore

no exception should be raised
#  In this case the tests fails whether that exception

in raised

Politecnico di Torino

Expected exception test

try{
 // e.g. method invoked with “wrong” args
 obj.method(null);
 fail(“Methdo didn’t detected an anomaly");
}catch(PossibleException e){
 assertTrue(true); // OK
}

class TheClassUnderTest {
 public void method(String p)

 throws PossibleException
 { /*... */ }
}

Politecnico di Torino

Unexpected exception test
try{
 // e.g. method invoked with right args
 obj.method(“Right Argument");
 assertTrue(true); // OK
}catch(PossibleException e){
 fail(“Method should not raise except.");
}

Exception $ Failure

Politecnico di Torino

Unexpected exception test
public void testSomething()

 throws PossibleException {
 // e.g. method invoked with right args
 obj.method(“Right Argument");
}

Politecnico di Torino

48

License (1)
!  THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL"

OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER
THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

!  BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF
THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

!  1. Definitions
–  "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in

unmodified form, along with a number of other contributions, constituting separate and independent works in
themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be considered a
Derivative Work (as defined below) for the purposes of this License.

–  "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a
translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art
reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or adapted,
except that a work that constitutes a Collective Work will not be considered a Derivative Work for the purpose of this
License. For the avoidance of doubt, where the Work is a musical composition or sound recording, the synchronization of
the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose of this
License.

–  "Licensor" means the individual or entity that offers the Work under the terms of this License.
–  "Original Author" means the individual or entity who created the Work.
–  "Work" means the copyrightable work of authorship offered under the terms of this License.
–  "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this

License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this
License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or
other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free,
non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated
below:

a.  to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work
as incorporated in the Collective Works;

b.  to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a
digital audio transmission the Work including as incorporated in Collective Works;

 The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights
include the right to make such modifications as are technically necessary to exercise the rights in other media and
formats, but otherwise you have no rights to make Derivative Works. All rights not expressly granted by Licensor are
hereby reserved, including but not limited to the rights set forth in Sections 4(d) and 4(e).

Politecnico di Torino

49

License (2)
!  4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following

restrictions:
a.  You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this

License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of
the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any
terms on the Work that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder.
You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of
warranties. You may not distribute, publicly display, publicly perform, or publicly digitally perform the Work with any
technological measures that control access or use of the Work in a manner inconsistent with the terms of this License
Agreement. The above applies to the Work as incorporated in a Collective Work, but this does not require the Collective Work
apart from the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice from
any Licensor You must, to the extent practicable, remove from the Collective Work any credit as required by clause 4(c), as
requested.

b.  You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily intended for or
directed toward commercial advantage or private monetary compensation. The exchange of the Work for other copyrighted
works by means of digital file-sharing or otherwise shall not be considered to be intended for or directed toward commercial
advantage or private monetary compensation, provided there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c.  If you distribute, publicly display, publicly perform, or publicly digitally perform the Work, You must keep intact all copyright
notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties (e.g.
a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other
reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable,
the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to
the copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable manner;
provided, however, that in the case of a Collective Work, at a minimum such credit will appear where any other comparable
authorship credit appears and in a manner at least as prominent as such other comparable authorship credit.

d.  For the avoidance of doubt, where the Work is a musical composition:
i.  Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to collect, whether

individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance
or public digital performance (e.g. webcast) of the Work if that performance is primarily intended for or
directed toward commercial advantage or private monetary compensation.

ii.  Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect, whether
individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any
phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license
created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions), if Your
distribution of such cover version is primarily intended for or directed toward commercial advantage or
private monetary compensation.

–  Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor reserves
the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the
public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the
US Copyright Act (or the equivalent in other jurisdictions), if Your public digital performance is primarily intended for or
directed toward commercial advantage or private monetary compensation.

Politecnico di Torino

50

License (3)
!  5. Representations, Warranties and Disclaimer
!  UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO

REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

!  6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

!  7. Termination
a.  This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms

of this License. Individuals or entities who have received Collective Works from You under this License, however,
will not have their licenses terminated provided such individuals or entities remain in full compliance with those
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b.  Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different
license terms or to stop distributing the Work at any time; provided, however that any such election will not serve
to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this
License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous
a.  Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the

recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
b.  If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or

enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

c.  No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or
consent shall be in writing and signed by the party to be charged with such waiver or consent.

d.  This License constitutes the entire agreement between the parties with respect to the Work licensed here. There
are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall
not be bound by any additional provisions that may appear in any communication from You. This License may not
be modified without the mutual written agreement of the Licensor and You.

