
Java Collection Framework

Version 2 - April 2014

© Maurizio Morisio, Marco Torchiano, 2014

2

Licensing Note

Attribution-NonCommercial-NoDerivs 2.5
�  You are free: to copy, distribute, display, and perform the work

Under the following conditions:
�  Attribution. You must attribute the work in the manner specified by the

author or licensor.

�  Noncommercial. You may not use this work for commercial purposes.
– 

�  No Derivative Works. You may not alter, transform, or build upon this
work.

�  For any reuse or distribution, you must make clear to others the license
terms of this work.

�  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license)

found at the end of this document

3

Framework
!  Interfaces (ADT, Abstract Data Types)
!  Implementations (of ADT)
!  Algorithms (sort)

!  java.util.*

!  After Java 5 release

" Lots of changes about collections

4

Interfaces

Collection<E>

Set<E> List<E>

Map<K,V>

SortedSet<E>
SortedMap<K,V>

Group containers

Associative containers

Queue<E>

Iterable<E>

5

Implementations

TreeSet

TreeMap Array  
List

Linked  
List

HashMap

Linked  
HashMap

Linked  
HashSet

HashSet

Map<K,V>

Sorted  
Map<K,V>

Collection<E>

Set<E> List<E>

Sorted  
Set<E>

Queue<E>

Priority
Queue

Interfaces

Classes

6

Internals

LinkedList

Linked list

LinkedHashMap TreeMap HashMap Map

ArrayList List

LinkedHashSet TreeSet HashSet Set

Hash table  
Linked list

Balanced  
tree

Resizable  
array

Hash 
table

interface

data structure

classes

Iterable
!  Container of elements that can be

iterated upon
!  Contains a single method:
Iterator<E> iterator()

" It returns the iterator on the elements

8

Iterators and iteration
!  A common operation with collections

is to iterate over their elements
!  Interface Iterator provides a

transparent means to cycle through all
elements of a Collection

!  Keeps track of last visited element of
the related collection

!  Each time the current element is
queried, it moves on automatically

Iterator
!  Is the class the allow the iteration on the

elements of a collection
!  Two main methods:

" boolean hasNext()
– Checks if there is a next element to iterate on

" E next()
– Returns the next element and advances by one

position
" void remove()

– Optional method, removes the current element

10

Iterator examples

Iterable<Person> persons =
 new LinkedList<Person>();

…
for(Iterator<Person> i = persons.iterator();
 i.hasNext();) {

 Person p = i.next();
 …
 System.out.println(p);

}

Print all objects in a list

11

Iterator examples

Iterable<Person> persons =
 new LinkedList<Person>();

…
for(Person p: persons) {
 …
 System.out.println(p);

}

The for-each syntax avoids
using iterator directly

12

Iterator examples (until Java 1.4)

Collection persons = new LinkedList();
…
for(Iterator i= persons.iterator(); i.hasNext();) {
 Person p = (Person)i.next();
 …
}

Print all objects in a list

13

Collection
!  Group of elements (references to objects)
!  It is not specified whether they are

" Ordered / not ordered
" Duplicated / not duplicated

!  Following constructors are common to all
classes implementing Collection
"  C()
"  C(Collection c)

14

Collection interface
!  int size()
!  boolean isEmpty()
!  boolean contains(E element)
!  boolean containsAll(Collection<?> c)
!  boolean add(E element)
!  boolean addAll(Collection<? extends E> c)
!  boolean remove(E element)
!  boolean removeAll(Collection<?> c)
!  void clear()
!  Object[] toArray()
!  Iterator<E> iterator()

15

Collection example
Collection<Person> persons =
 new LinkedList<Person>();
persons.add(new Person(�Alice�));
System.out.println(persons.size());

Collection<Person> copy =
 new TreeSet<Person>();
copy.addAll(persons);//new TreeSet(persons)

Person[] array = copy.toArray();
System.out.println(array[0]);

16

Map
!  An object that associates keys to values

(e.g., SSN ⇒ Person)
!  Keys and values must be objects
!  Keys must be unique
!  Only one value per key

!  Following constructors are common to all

collection implementers
"  M()
"  M(Map m)

17

Map interface
!  V put(K key, V value)
!  V get(K key)
!  Object remove(K key)
!  boolean containsKey(K key)
!  boolean containsValue(V value)
!  public Set<K> keySet()
!  public Collection<V> values()
!  int size()
!  boolean isEmpty()
!  void clear()

18

Map example
Map<String,Person> people =
 new HashMap<String,Person>();

people.put(�ALCSMT�, //ssn
 new Person(�Alice�, �Smith�));

people.put(�RBTGRN�, //ssn
 new Person(�Robert�, �Green�));

Person bob = people.get(�RBTGRN�);
if(bob == null)
 System.out.println(�Not found�);

int populationSize = people.size();

19

Generic collections
!  Since Java 5, all collection interfaces

and classes have been redefined as
Generics

!  Use of generics leads to code that is
" safer
" more compact
" easier to understand
" equally performing

20

Generic list - excerpt
public interface List<E>{
 void add(E x);
 Iterator<E> iterator();
}
public interface Iterator<E>{
 E next();
 boolean hasNext();
}

21

Example
! Using a list of Integers

" Without generics (ArrayList list)
list.add(0, new Integer(42));
int n= ((Integer)(list.get(0))).intValue();

" With generics (ArrayList<Integer> list)
list.add(0, new Integer(42));
int n= ((Integer)(list.get(0))).intValue();

" + autoboxing (ArrayList<Integer> list)
list.add(0,new Integer(42));
int total = list.get(0).intValue();

Group containers
(Collections)

Collection<E>

Set<E> List<E>

SortedSet<E>

Queue<E>

23

List
!  Can contain duplicate elements
!  Insertion order is preserved
!  User can define insertion point
!  Elements can be accessed by position
!  Augments Collection interface

24

List specific methods
!  E get(int index)
!  E set(int index, E element)
!  void add(int index, E element)
!  E remove(int index)

!  boolean addAll(int index, Collection<E> c)
!  int indexOf(E o)
!  int lastIndexOf(E o)
!  List<E> subList(int from, int to)

25

List implementations
ArrayList
!  get(n)

" Constant

!  add(0,…)
"  Linear

!  add()
" Constant

LinkedList
!  get(n)

"  Linear

!  add(0, …)
" Constant

!  add()
" Constant

List implementations - Get

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
[n

s]

Size [# items]

LinkedList

ArrayList

List Implementations - Add

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160

ns
add in first position in a list of given size

LinkedList

ArrayList

List Implementations - Add

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300

add given # of elements in first position

LinkedList

ArrayList

List implementation - Models

t(n) = CL
Add in first pos.
in list of size n

LinkedList ArrayList

t(n) = n · CA

t(n) = n · CLAdd n elements t(n) =
nX

i=1

CA · i

=
CA

2
n · (n� 1)

CL = 16.0 ns
CA = 0.2 ns

30

List implementations
!  ArrayList

"  ArrayList()
"  ArrayList(int initialCapacity)
"  ArrayList(Collection c)
"  void ensureCapacity(int minCapacity)

!  LinkedList
"  void addFirst(Object o)
"  void addLast(Object o)
"  Object getFirst()
"  Object getLast()
"  Object removeFirst()
"  Object removeLast()

31

Example I
LinkedList<Integer> ll =
 new LinkedList<Integer>();

ll.add(new Integer(10));
ll.add(new Integer(11));

ll.addLast(new Integer(13));
ll.addFirst(new Integer(20));

//20, 10, 11, 13

32

Example II
Car[] garage = new Car[20];

garage[0] = new Car();
garage[1] = new ElectricCar();
garage[2] = new ElectricCar();
garage[3] = new Car();

for(int i=0; i<garage.length; i++){
 garage[i].turnOn();
}

Null pointer error

List<Car> garage = new ArrayList<Car>(20);

garage.set(0, new Car());
garage.set(1, new ElectricCar());
garage.set(2, new ElectricCar());
garage.set(3, new Car());

for(int i; i<garage.size(); i++){
 Car c = garage.get(i);
 c.turnOn();
}

33

Example III

List l = new ArrayList(2); // 2 refs to null

l.add(new Integer(11)); // 11 in position 0
l.add(0, new Integer(13)); // 11 in position 1
l.set(0, new Integer(20)); // 13 replaced by 20

l.add(9, new Integer(30)); // NO: out of bounds
l.add(new Integer(30)); // OK, size extended

34

Queue
!  Collection whose elements have an

order
" not and ordered collection though

!  Defines a head position where is the
first element that can be accessed
" peek()
" poll()

35

Queue implementations
!  LinkedList

" head is the first element of the list
" FIFO: Fist-In-First-Out

!  PriorityQueue
" head is the smallest element

36

Queue example
Queue<Integer> fifo =
 new LinkedList<Integer>();
Queue<Integer> pq =
 new PriorityQueue<Integer>();
fifo.add(3); pq.add(3);
fifo.add(1); pq.add(1);
fifo.add(2); pq.add(2);
System.out.println(fifo.peek()); // 3
System.out.println(pq.peek()); // 1

37

Set
!  Contains no methods other than those

inherited from Collection
!  add()has restriction that no duplicate

elements are allowed
" e1.equals(e2) == false ∀ e1,e2 ∈ Σ

!  Iterator

" The elements are traversed in no
particular order

The equals() Contract
•  It is reflexive: x.equals(x) == true
•  It is symmetric: x.equals(y) == y.equals(x)
•  It is transitive: for any reference values x, y, and z,

 if x.equals(y) == true AND y.equals(z) == true
 => x.equals(z) == true
•  It is consistent: for any reference values x and y,

multiple invocations of x.equals(y) consistently return
true (or false), provided that no information used in
equals comparisons on the object is modified.

•  x.equals(null) == false

hashCode

The hashCode() contract
!  The hashCode() method must consistently return

the same value, if no information used in equals()
comparisons on the object is modified.

!  If two objects are equal for equals() method, then
calling the hashCode() method on the two objects
must produce the same integer result.

!  If two objects are unequal for equals() method,
then calling the hashCode() method on the two
objects MAY produce distinct integer results.
"  producing distinct results for unequal objects may

improve the performance of hash tables

HashCode()

equals() and hashcode()
!  equals() and hashCode() are bound

together by a joint contract that
specifies if two objects are considered
equal using the equals() method, then
they must have identical hashcode()
values.

! To be truly safe:
"  If override equals(), override hashCode()
" Objects that are equals have to return

identical hashcodes.

43

SortedSet
!  No duplicate elements
!  Iterator

"  The elements are traversed according to the
natural ordering (ascending)

!  Augments Set interface
"  Object first()
"  Object last()
"  SortedSet headSet(Object toElement)
"  SortedSet tailSet(Object fromElement)
"  SortedSet subSet(Object from, Object to)

44

Set implementations
!  HashSet implements Set

" Hash tables as internal data structure
(faster)

!  LinkedHashSet extends HashSet
" Elements are traversed by iterator

according to the insertion order

!  TreeSet implements SortedSet
" R-B trees as internal data structure

(computationally expensive)

45

Note on sorted collections
!  Depending on the constructor used

they require different implementation
of the custom ordering

!  TreeSet()
" Natural ordering (elements must be

implementations of Comparable)
!  TreeSet(Comparator c)

" Ordering is according to the comparator
rules, instead of natural ordering

Iterators

47

Note well
!  It is unsafe to iterate over a collection

you are modifying (add/del) at the
same time

!  Unless you are using the iterator
methods
" Iterator.remove()
" ListIterator.add()

48

Delete
List<Integer> lst=new LinkedList<Integer>();
lst.add(new Integer(10));
lst.add(new Integer(11));
lst.add(new Integer(13));
lst.add(new Integer(20));

int count = 0;
for (Iterator<?> itr = lst.iterator();
 itr.hasNext();) {

 itr.next();
 if (count==1)
 lst.remove(count); // wrong
 count++;
}

ConcurrentModificationException

49

Delete (cont�d)
List<Integer> lst=new LinkedList<Integer>();
lst.add(new Integer(10));
lst.add(new Integer(11));
lst.add(new Integer(13));
lst.add(new Integer(20));

int count = 0;
for (Iterator<?> itr = lst.iterator();
 itr.hasNext();) {

 itr.next();
 if (count==1)
 itr.remove(); // ok
 count++;
} Correct

50

Add
List lst = new LinkedList();
lst.add(new Integer(10));
lst.add(new Integer(11));
lst.add(new Integer(13));
lst.add(new Integer(20));

int count = 0;
for (Iterator itr = lst.iterator();
 itr.hasNext();) {

 itr.next();
 if (count==2)
 lst.add(count, new Integer(22));//wrong
 count++;
}

ConcurrentModificationException

51

Add (cont�d)
List<Integer> lst=new LinkedList<Integer>();
lst.add(new Integer(10));
lst.add(new Integer(11));
lst.add(new Integer(13));
lst.add(new Integer(20));

int count = 0;
for (ListIterator<Integer> itr =
 lst.listIterator(); itr.hasNext();){

 itr.next();
 if (count==2)
 itr.add(new Integer(22)); // ok
 count++;
}

Correct

Associative containers
(Maps)

Map<K,V>

SortedMap<K,V>

Map interface
!  V put(K key, V value)
!  V get(K key)
!  Object remove(K key)
!  boolean containsKey(K key)
!  boolean containsValue(V value)
!  public Set<K> keySet()
!  public Collection<V> values()
!  int size()
!  boolean isEmpty()
!  void clear()

53

54

SortedMap
!  The elements are traversed according

to the keys��natural ordering
(ascending)

!  Augments Map interface
"  SortedMap subMap(K fromKey, K toKey)
"  SortedMap headMap(K toKey)
"  SortedMap tailMap(K fromKey)
"  K firstKey()
"  K lastKey()

55

Map implementations
!  Analogous to Set

!  HashMap implements Map

" No order
!  LinkedHashMap extends HashMap

" Insertion order
!  TreeMap implements SortedMap

" Ascending key order

56

HashMap
!  Get/put takes constant time (in case of

no collisions)
!  Automatic re-allocation when load

factor reached
!  Constructor optional arguments

" load factor (default = .75)
" initial capacity (default = 16)

57

Using HashMap
Map<String,Student> students =
 new HashMap<String,Student>();

students.put(�123�,
 new Student(�123�,�Joe Smith�));

Student s = students.get(�123�);

for(Student si: students.values()){

}

Objects Sorting

59

Comparable interface

!  Compares the receiving object with the
specified object.

!  Return value must be:
" <0 if this precedes obj
" ==0 if this has the same order as obj
" >0 if this follows obj

public interface Comparable<T> {
 public int compareTo(T obj);
}

60

Comparable
!  The interface is implemented by language

common types in packages java.lang and
java.util

" String objects are lexicographically
ordered

" Date objects are chronologically ordered
" Number and sub-classes are ordered

numerically

61

Custom ordering
!  How to define an ordering upon

Student objects according to the
�natural alphabetic order��

public class Student
 implements Comparable<Student>{

 private String first;
 private String last;
 public int compareTo(Student o){
 ...
 }
}

62

Custom ordering

public int compareTo(Student o){

 int cmp = lastName.compareTo(s.lastName);

 if(cmp!=0)
 return cmp;
 else
 return firstName.compareTo(s.firstName);
}

63

Ordering �the old way�
!  In pre Java 5 code we had:

" public int compareTo(Object obj)
!  No control on types
!  A cast had to be performed within the

method
" Possible ClassCastException when

comparing objects of unrelated types

64

Ordering �the old way�

public int compareTo(Object obj){

 Student s = (Student)obj;

 int cmp = lastName.compareTo(s.lastName);

 if(cmp!=0)
 return cmp;
 else
 return firstName.compareTo(s.firstName);
}

possible  
run-time error

65

Custom ordering (alternative)

!  java.util
!  Compares its two arguments
!  Return value must be

" <0 if o1 precedes o2
" ==0 if o1 has the same ordering as o2
" >0 if o1 follows o2

public interface Comparator<T> {
 public int compare(T o1, T o2);
}

66

Custom ordering (alternative)
class StudentIDComparator
 implements Comparator<Student> {

 public int compare(Student s1, Student s2){
 return s1.getID() - s2.getID();
 }
}

!  Usually used to define alternative orderings
to Comparable

!  The �old way� version compares two Object
references

Algorithms

68

Algorithms
!  Static methods of java.util.Collections class

" Work on lists

!  sort() - merge sort, n log(n)
!  binarySearch() – requires ordered sequence
!  shuffle() – unsort
!  reverse() - requires ordered sequence
!  rotate() – of given a distance
!  min(), max() – in a Collection

69

Sort method
!  Two generic overloads:

" on Comparable objects:
public static <T extends Comparable<? super T>>
void sort(List<T> list)

" using a Comparator object:
public static <T>
void sort(List<T> list, Comparator<? super T>)

70

Sort generic

! Why <? super T> instead of just <T> ?
" Suppose you define

– MasterStudent extends Student { }
" Intending to inherit the Student ordering

–  It does not implement
Comparable<MasterStudent>

– But MasterStudent extends (indirectly)
Comparable<Student>

T extends Comparable<? super T>
Student MasterStudent MasterStudent

71

Custom ordering (alternative)

List students = new LinkedList();

students.add(new Student(“Mary”,“Smith”,34621));
students.add(new Student(“Alice”,“Knight”,13985));
students.add(new Student(“Joe”,“Smith”,95635));

Collections.sort(students); // sort by name

Collections.sort(students,
 new StudentIDComparator()); // sort by ID

72

Search
!  <T> int binarySearch(List<? extends
Comparable<? super T>> l, T key)

" Searches the specified object
" List must be sorted into ascending order

according to natural ordering
!  <T> int binarySearch(List<? extends T> l,
T key, Comparator<? super T> c)

" Searches the specified object
" List must be sorted into ascending order

according to the specified comparator

73

Algorithms - Arrays
!  Static methods of java.util.Arrays class

" Work on object arrays

!  sort()
!  binarySearch()

74

Search - Arrays
!  int binarySearch(Object[] a, Object key)

" Searches the specified object
" Array must be sorted into ascending

order according to natural ordering
!  int binarySearch(Object[] a, Object key,
Comparator c)

" Searches the specified object
" Array must be sorted into ascending

order according to the specified
comparator

75

License (1)
!  THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL"

OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER
THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

!  BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF
THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

!  1. Definitions
–  "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in

unmodified form, along with a number of other contributions, constituting separate and independent works in
themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be considered a
Derivative Work (as defined below) for the purposes of this License.

–  "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a
translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art
reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or adapted,
except that a work that constitutes a Collective Work will not be considered a Derivative Work for the purpose of this
License. For the avoidance of doubt, where the Work is a musical composition or sound recording, the synchronization of
the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose of this
License.

–  "Licensor" means the individual or entity that offers the Work under the terms of this License.
–  "Original Author" means the individual or entity who created the Work.
–  "Work" means the copyrightable work of authorship offered under the terms of this License.
–  "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this

License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this
License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or
other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free,
non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated
below:

a.  to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work
as incorporated in the Collective Works;

b.  to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a
digital audio transmission the Work including as incorporated in Collective Works;

 The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights
include the right to make such modifications as are technically necessary to exercise the rights in other media and
formats, but otherwise you have no rights to make Derivative Works. All rights not expressly granted by Licensor are
hereby reserved, including but not limited to the rights set forth in Sections 4(d) and 4(e).

76

License (2)
!  4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following

restrictions:
a.  You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this

License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of
the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any
terms on the Work that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder.
You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of
warranties. You may not distribute, publicly display, publicly perform, or publicly digitally perform the Work with any
technological measures that control access or use of the Work in a manner inconsistent with the terms of this License
Agreement. The above applies to the Work as incorporated in a Collective Work, but this does not require the Collective Work
apart from the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice from
any Licensor You must, to the extent practicable, remove from the Collective Work any credit as required by clause 4(c), as
requested.

b.  You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily intended for or
directed toward commercial advantage or private monetary compensation. The exchange of the Work for other copyrighted
works by means of digital file-sharing or otherwise shall not be considered to be intended for or directed toward commercial
advantage or private monetary compensation, provided there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c.  If you distribute, publicly display, publicly perform, or publicly digitally perform the Work, You must keep intact all copyright
notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties (e.g.
a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other
reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable,
the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to
the copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable manner;
provided, however, that in the case of a Collective Work, at a minimum such credit will appear where any other comparable
authorship credit appears and in a manner at least as prominent as such other comparable authorship credit.

d.  For the avoidance of doubt, where the Work is a musical composition:
i.  Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to collect, whether

individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance
or public digital performance (e.g. webcast) of the Work if that performance is primarily intended for or
directed toward commercial advantage or private monetary compensation.

ii.  Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect, whether
individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any
phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license
created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions), if Your
distribution of such cover version is primarily intended for or directed toward commercial advantage or
private monetary compensation.

–  Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor reserves
the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the
public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the
US Copyright Act (or the equivalent in other jurisdictions), if Your public digital performance is primarily intended for or
directed toward commercial advantage or private monetary compensation.

77

License (3)
!  5. Representations, Warranties and Disclaimer
!  UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO

REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

!  6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

!  7. Termination
a.  This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms

of this License. Individuals or entities who have received Collective Works from You under this License, however,
will not have their licenses terminated provided such individuals or entities remain in full compliance with those
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b.  Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different
license terms or to stop distributing the Work at any time; provided, however that any such election will not serve
to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this
License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous
a.  Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the

recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
b.  If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or

enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

c.  No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or
consent shall be in writing and signed by the party to be charged with such waiver or consent.

d.  This License constitutes the entire agreement between the parties with respect to the Work licensed here. There
are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall
not be bound by any additional provisions that may appear in any communication from You. This License may not
be modified without the mutual written agreement of the Licensor and You.

