
Inheritance

Version 3.3 - March 2014

© Maurizio Morisio, Marco Torchiano, 2014

2

Licensing Note

Attribution-NonCommercial-NoDerivs 2.5
!  You are free: to copy, distribute, display, and perform the work

Under the following conditions:
!  Attribution. You must attribute the work in the manner specified by

the author or licensor.

!  Noncommercial. You may not use this work for commercial purposes.
– 

!  No Derivative Works. You may not alter, transform, or build upon this
work.

!  For any reuse or distribution, you must make clear to others the
license terms of this work.

!  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license)

found at the end of this document

Inheritance
!  A class can be a sub-type of another class
!  The derived class contains

"  all the members of the class it inherits from
"  plus any member it defines explicitly

!  The derived class can override the
definition of existing methods by providing
its own implementation

!  The code of the derived class consists of
the changes and additions to the base class

Addition
class Employee{
 String name;
 double wage;
 void incrementWage(){…}

}
class Manager extends Employee{
 String managedUnit;
 void changeUnit(){…}

}
Manager m = new Manager();
m.incrementWage(); // OK, inherited

Overriding
class Vector{
 int vect[];
 void add(int x) {…}

}

class OrderedVector extends Vector{
 void add(int x){…}

}

Inheritance and polymorphism
class Employee{

 private String name;

 public void print(){
System.out.println(name);

 }

}

class Manager extends Employee{
private String managedUnit;

public void print(){ //overrides
 System.out.println(name); //un-optimized!
 System.out.println(managedUnit);
}

}

Employee e1 = new Employee();
Employee e2 = new Manager();
e1.print(); // name
e2.print(); // name and unit

Inheritance and polymorphism

Employee e1 = new Employee();

Employee e2 = new Manager(); //ok, is_a

e1.print(); // name

e2.print(); // name and unit

Why inheritance
!  Frequently, a class is merely a modification

of another class. In this way, there is
minimal repetition of the same code

!  Localization of code
"  Fixing a bug in the base class automatically fixes

it in the subclasses
" Adding functionality in the base class

automatically adds it in the subclasses
"  Less chances of different (and inconsistent)

implementations of the same operation

Inheritance in real Life
!  A new design created by the

modification of an already existing
design
" The new design consists of only the

changes or additions from the base
design

!  CoolPhoneBook inherits PhoneBook
" Add mail address and cell number

Example of inheritance tree

Animal

SalesMan

Living species

vegetal

Flower

Human being

Travel Agent

Student

Professor

Inheritance terminology
!  Class one above

" Parent class
!  Class one below

" Child class
!  Class one or more above

" Superclass, Ancestor class, Base class
!  Class one or more below

" Subclass, Descendent class

12

Inheritance in a few words
!  Subclass

" Inherits attributes and methods
" Can modify inherited attributes and

methods (override)
" Can add new attributes and methods

13

Inheritance in Java: extends

Car

color
isOn
licencePlate

turnOn
paint

ElectricCar

cellsAreCharged

recharge
turnOn

class Car {

 String color;
 boolean isOn;
 String licencePlate;

 void paint(String color) {
 this.color = color;
 }

 void turnOn() {
 isOn=true;
 }
}

class ElectricCar extends Car
{

 boolean cellsAreCharged;

 void recharge() {
 cellsAreCharged = true;
 }

 void turnOn() {
 if(cellsAreCharged)
 isOn=true;
 }
}

14

ElectricCar
!  Inherits

" attributes (color, isOn, licencePlate)
" methods (paint)

! Modifies (overrides)
" turnOn()

!  Adds
" attributes (cellsAreCharged)
" Methods (recharge)

Visibility (scope)

16

Example
class Employee {
 private String name;
 private double wage;
}

class Manager extends Employee {

 void print() {
 System.out.println(�Manager� +
 name + ��� + wage);
 }
}

Not visible

17

Protected
!  Attributes and methods marked as

" public are always accessible
" private are accessible within the class

only
" protected are accessible within the class

and its subclasses

In summary
Method
in the
same
class

Method of
another

class in the
same

package

Method
of

subclass

Method of
class in
other

package

private #
package # #
protected # # #
public # # # #

19

Super (reference)
!  �this� is a reference to the current

object

!  �super� is a reference to the parent
class

20

Example

if(cellsAreCharged)
 isOn = true;

Car

color
isOn
licencePlate

turnOn
paint

ElectricCar

cellsAreCharged

recharge
turnOn

class Car {

 String color;
 boolean isOn;
 String licencePlate;

 void paint(String color) {
 this.color = color;
 }

 void turnOn() {
 isOn=true;
 }
}

class ElectricCar extends Car{

 boolean cellsAreCharged;

 void recharge() {
 cellsAreCharged = true;
 }

 void turnOn() {
 if(cellsAreCharged)
 super.turnOn();
 }
}

was

21

Attributes redefinition
!  Class Parent{

 protected int attr = 7;
}

!  Class Child{
 protected String attr = �hello�;

 void print(){
 System.out.println(super.attr);
 System.out.println(attr);
 }

 public static void main(String args[]){
 Child c = new Child();
 c.print();
 }
}

Inheritance and
constructors

23

Construction of child’s objects
!  Since each object �contains� an

instance of the parent class, the latter
must be initialized

!  Java compiler automatically inserts a
call to default constructor (no params)
of parent class

!  The call is inserted as the first
statement of each child constructor

24

Construction of child objects
!  Execution of constructors proceeds

top-down in the inheritance hierarchy

!  In this way, when a method of the

child class is executed (constructor
included), the super-class is
completely initialized already

25

Example
class ArtWork {
 ArtWork() {
 System.out.println(“ctor ArtWork”); }
}

class Drawing extends ArtWork {
 Drawing() {
 System.out.println(“ctor Drawing”); }
}

class Cartoon extends Drawing {
 Cartoon() {
 System.out.println(“ctor Cartoon”); }
}

26

Example (cont�d)

Cartoon obj = new Cartoon();

ctor ArtWork
ctor Drawing
ctor Cartoon

27

A word of advice
!  Default constructor �disappears� if

custom constructors are defined
class Parent{
 Parent(int i){}
}
class Child extends Parent{ }
// error! class Parent{

 Parent(int i){}
 Parent(){} //explicit default
}
class Child extends Parent { }
// ok!

28

Super
!  If you define custom constructors

with arguments
!  and default constructor is not defined

explicitly

$ the compiler cannot insert the call

automatically

29

Super
!  Child class constructor must call the

right constructor of the parent class,
explicitly

!  Use super() to identify constructors of

parent class

!  First statement in child constructors

30

Example
class Employee {
 private String name;
 private double wage;
 ???
 Employee(String n, double w){
 name = n;
 wage = w;
 }
}

class Manager extends Employee {
 private int unit;

 Manager(String n, double w, int u) {
 super(); ERROR !!!
 unit = u;
 }
}

31

Example
class Employee {
 private String name;
 private double wage;

 Employee(String n, double w){
 name = n;
 wage = w;
 }
}

class Manager extends Employee {
 private int unit;

 Manager(String n, double w, int u) {
 super(n,w);
 unit = u;
 }
}

Depth of Inheritance Tree
!  In general too deep inheritance trees

put at risk the understandability of the
code
" An empirical limit is 5 levels

Dynamic binding/
polymorphism

34

Example
!  Car[] garage = new Car[4];
!  garage[0] = new Car();
!  garage[1] = new ElectricCar();
!  garage[2] = new ElectricCar();
!  garage[3] = new Car();

!  for(int i=0; i<garage.length; i++){
 garage[i].turnOn();
}

35

Binding
!  Association message/method
!  Constraint

" Same signature
Car a;
for(int i=0; i<garage.length; i++){
 a = garage[i]
 a.turnOn();
}

message method

Car

color
isOn
licencePlate

turnOn
paint

ElectricCar

cellsAreCharged

recharge
turnOn

Object

37

Class Object
!  java.lang.Object
!  All classes are subtypes of Object

Bird

canFly

Object

Vertebrate
hasSpine

class Vertebrate {
 …
}

class Bird extends Vertebrate{
 …
}

extends Object Implicitly

38

Class Object
!  Each instance can be seen as an Object

instance (see Collection)

!  Class Object defines some services, which
are useful for all classes

!  Often, they are overridden in sub-classes
Object

toString() : String
equals(Object) : boolean

Objects’ collections
!  References of type Object play a role

similar to void* in C
Object [] objects = new Object[3];

objects[0] = "First!”;

objects[2] = new Employee("Luca","Verdi");

objects[1] = new Integer(2);

for(Object obj : objects){

 System.out.println(obj);

}

Wrappers must be used

instead of primitive types

40

Java Object
!  toString()

"  Returns a string
uniquely identifying the
object

" Default implementation
returns:

ClassName@######
"  Es:
org.Employee@af9e22

Object

toString() : String
equals(Object) : boolean

41

Java Object
!  equals()

"  Tests equality of values
" Default implementation

compares references:

Object

toString() : String
equals(Object) : boolean

 public boolean equals(Object other){
 return this == other;
 }
"  Must be overridden to compare contents, e.g.:

 public boolean equals(Object o){
 Student other = (Student)o;
 return this.id.equals(other.id);
 }

42

System.out.print(Object)
!  print methods implicitly invoke toString()

on all object parameters
 class Car{ String toString(){…} }

 Car c = new Car();

 System.out.print(c); // same as...

 ... System.out.print(c.toString());

!  Polymorphism applies when toString() is
overridden
 Object ob = c;

 System.out.print(ob); // Car�s toString() called

Company Class Diagram2 2014/03/21 powered by Astah

 pkg

Employee

+ getDepartment() : String

Manager

+ raiseSalary() : void

CEO

Object

Casting

45

Types
!  Java is a strictly typed language, i.e.,

each variable has a type

!  float f;
f = 4.7; // legal
f = �string�; // illegal

!  Car c;
c = new Car(); // legal
c = new String(); // illegal

46

Cast
! Type conversion (explicit or

implicit)
int i = 44;
float f = i;
// implicit cast 2c -> fp
f = (float) 44;
// explicit cast

47

Cast - Generalization
!  Things change slightly with

inheritance
!  Normal case…

Employee e = new Employee("Smith",12000);
Manager m = new Manager("Black",25000,"IT");

Class Diagram2 2014/03/21 powered by Astah

 pkg

Employee

Manager

CEO

Generalization

Employee

Manager

CEO

Class Diagram2 2014/03/21 powered by Astah

 pkg

Employee

Manager

CEO

49

Upcast
!  Assignment from a more specific type

(subtype) to a more general type (supertype)
"  Employee e = new Employee(…);
Manager m = new Manager(…);
Employee em = m

" ∀ m ∈ Manager : m ∈ Employee
!  Upcasts are always type-safe and are

performed implicitly by the compiler
"  Though it is legal to explicitly indicate the cast

Upcast
! Motivation

" You can treat indifferently object of
different classes, provided they inherit
from a common class

Employee[] team = {

 new Manager("Mary Black",25000,"IT"),

 new Employee("John Smith",12000),

 new Employee("Jane Doe",12000)

};

Cast
!  Reference type and object type are

distinct concepts
!  A reference cast only affects the

reference
"  In the previous example the object referenced to

by ‘em’ continues to be of Manager type

!  Notably, in contrast, a primitive type
cast involves a value conversion

52

Downcast
!  Assignment from a more general type

(super-type) to a more specific type
(sub-type)
" Manager mm = (Manager)em;
!  ∃ em ∈ Employee : em ∈ Manager
!  ∃ em ∈ Employee : em ∉ Manager

!  Not safe by default, no automatic
conversion provided by the compiler
" MUST be explicit

Downcast
! Motivation

" To access a member defined in a class
you need a reference of that class type
– Or any subclass

Employee emp = staff[0];

s = emp.getDepartment();

Manager mgr = (Manager)staff[0];

s = mgr.getDepartment();

Syntax Error: The method
getDepartment() is

undefined for the type
Employee

Downcast - Warning
!  The compiler trusts any downcast.
!  JVM at run-time checks type

consistency for all reference
assignments

mgr = (Manager)staff[1];

 ClassCastException: Employee
cannot be cast to Manager

55

Down cast - safety
!  Use the instanceof operator

" aReference instanceof aClass
" Returns true if the object referred to by

lhs reference can be cast to the rhs class

if(staff[1] instanceof Manager){

 mgr = (Manager)staff[1];

}

56

Upcast to Object
!  Each class is either directly or

indirectly a subclass of Object
!  It is always possible to upcast any

instance to Object type (see Collection)

AnyClass foo = new AnyClass();
Object obj;
obj = foo;

Abstract classes

58

Abstract class
!  Often, superclass is used to define

common behavior for many child
classes

!  But the class is too general to be
instantiated

!  Behavior is partially left unspecified
(this is more concrete than interface)

59

public abstract class Shape {

 private int color;

 public void setColor(int color){
 this.color = color;
 }

 // to be implemented in child classes
 public abstract void draw();
}

Abstract modifier

No  
method

body

60

public class Circle extends Shape {

 public void draw() {
 // body goes here
 }
}

Object a = new Shape(); // Illegal: abstract
Object a = new Circle(); // OK

Abstract modifier

Interfaces

62

Java interface
!  An interface is a special type of �class�

where methods and attributes are
implicitly public
" Attributes are implicitly static and final
" Methods are implicitly abstract (no body)

!  Cannot be instantiated (no new)
!  Can be used to define references

Purpose of interfaces
!  Define a common “interface” that

allows alternative implementations
!  Provide a (set of) method(s) that can

be called by algorithms
!  Define a (set of) callback method(s)

Alternative implementations
!  Complex numbers

public interface Complex {
 double real();
 double imaginary();
 double modulus();
 double argument();
}

!  Can be implemented using either
Cartesian or polar coordinates

65

Employee

String name

isEqual(String) :
boolean

Car

String licencePlate

isEqual(String) :
boolean

<<interface>> 
Comparable

isEqual(String) : boolean

Example

66

Example (cont�d)
public interface Comparable {
 void isEqual(String s);
}

public class Car implements Comparable {
 private String licencePlate;
 public void isEqual(String s){
 return licencePlate.equals(s);
 }
} public class Employee implements Comparable{

 private String name;
 public void isEqual(String s){
 return name.equals(s);
 }
}

Public

67

Example
public class Foo {
 private Comparable objects[];
 public Foo(){
 objects = new Comparable[3];
 objects[0] = new Employee();
 objects[1] = new Car();
 objects[2] = new Employee();
 }
 public Comparable find(String s){
 for(int i=0; i< objects.length; i++)
 if(objects[i].isEqual(s)
 return objects[i];

 }
}

68

Rules (interface)
!  An interface can extend another

interface, cannot extend a class 
 interface Bar extends Comparable {
 void print();
}

!  An interface can extend multiple
interfaces
interface Bar extends Orderable, Comparable{
 ...
} interfaces

interface

69

Rules (class)
!  A class can extend only one class
!  A class can implement multiple

interfaces

class Person
 extends Employee
 implements Orderable, Comparable {…}

A word of advice
!  Defining a class that contains abstract

methods only is not illegal but..
" You should use interfaces instead

!  Overriding methods in subclasses can
maintain or extend the visibility of
overridden superclass’s methods
" e.g. protected int m() can’t be overridden by

– private int m()
–  int m()

" Only protected or public are allowed

70

71

Homework
!  See the doc of java.lang.Comparable

 public interface Comparable{
 int compareTo(Object obj);
 }

!  Returns a negative integer, 0, or a

positive integer as this object is less
than, equal, or greater than obj

72

Homework (cont�d)
!  Define Employee, which implements

Comparable (order by ID)

!  Define OrderedArray class
" void add(Comparable c) //ordered insert
" void print() //prints out

!  Test it with the following main

73

public static void main(String args[]){

 int size = 3; // array size
 OrderedArray oa = new OrderedArray(size);

 oa.add(new Employee(�Mark�, 37645));
 oa.add(new Employee(�Andrew�, 12345));
 oa.add(new Employee(�Sara�, 97563));

 oa.print();
}

Homework (cont�d)

ID Name

Wrap-up session
!  Inheritance

" Objects defined as sub-types of already existing
objects. They share the parent data/methods
without having to re-implement

!  Specialization
" Child class augments parent (e.g. adds an

attribute/method)
!  Overriding

" Child class redefines parent method
!  Implementation/reification

" Child class provides the actual behaviour of a
parent method

Wrap-up session
!  Polymorphism

" The same message can produce different
behavior depending on the actual type of
the receiver objects (late binding of
message/method)

76

License (1)
!  THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL"

OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER
THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

!  BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF
THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

!  1. Definitions
–  "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in

unmodified form, along with a number of other contributions, constituting separate and independent works in
themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be considered a
Derivative Work (as defined below) for the purposes of this License.

–  "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a
translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art
reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or adapted,
except that a work that constitutes a Collective Work will not be considered a Derivative Work for the purpose of this
License. For the avoidance of doubt, where the Work is a musical composition or sound recording, the synchronization of
the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose of this
License.

–  "Licensor" means the individual or entity that offers the Work under the terms of this License.
–  "Original Author" means the individual or entity who created the Work.
–  "Work" means the copyrightable work of authorship offered under the terms of this License.
–  "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this

License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this
License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or
other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free,
non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated
below:

a.  to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work
as incorporated in the Collective Works;

b.  to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a
digital audio transmission the Work including as incorporated in Collective Works;

 The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights
include the right to make such modifications as are technically necessary to exercise the rights in other media and
formats, but otherwise you have no rights to make Derivative Works. All rights not expressly granted by Licensor are
hereby reserved, including but not limited to the rights set forth in Sections 4(d) and 4(e).

77

License (2)
!  4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following

restrictions:
a.  You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this

License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of
the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any
terms on the Work that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder.
You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of
warranties. You may not distribute, publicly display, publicly perform, or publicly digitally perform the Work with any
technological measures that control access or use of the Work in a manner inconsistent with the terms of this License
Agreement. The above applies to the Work as incorporated in a Collective Work, but this does not require the Collective Work
apart from the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice from
any Licensor You must, to the extent practicable, remove from the Collective Work any credit as required by clause 4(c), as
requested.

b.  You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily intended for or
directed toward commercial advantage or private monetary compensation. The exchange of the Work for other copyrighted
works by means of digital file-sharing or otherwise shall not be considered to be intended for or directed toward commercial
advantage or private monetary compensation, provided there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c.  If you distribute, publicly display, publicly perform, or publicly digitally perform the Work, You must keep intact all copyright
notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties (e.g.
a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other
reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable,
the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to
the copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable manner;
provided, however, that in the case of a Collective Work, at a minimum such credit will appear where any other comparable
authorship credit appears and in a manner at least as prominent as such other comparable authorship credit.

d.  For the avoidance of doubt, where the Work is a musical composition:
i.  Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to collect, whether

individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance
or public digital performance (e.g. webcast) of the Work if that performance is primarily intended for or
directed toward commercial advantage or private monetary compensation.

ii.  Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect, whether
individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any
phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license
created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions), if Your
distribution of such cover version is primarily intended for or directed toward commercial advantage or
private monetary compensation.

–  Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor reserves
the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the
public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the
US Copyright Act (or the equivalent in other jurisdictions), if Your public digital performance is primarily intended for or
directed toward commercial advantage or private monetary compensation.

78

License (3)
!  5. Representations, Warranties and Disclaimer
!  UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO

REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

!  6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

!  7. Termination
a.  This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms

of this License. Individuals or entities who have received Collective Works from You under this License, however,
will not have their licenses terminated provided such individuals or entities remain in full compliance with those
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b.  Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different
license terms or to stop distributing the Work at any time; provided, however that any such election will not serve
to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this
License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous
a.  Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the

recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
b.  If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or

enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

c.  No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or
consent shall be in writing and signed by the party to be charged with such waiver or consent.

d.  This License constitutes the entire agreement between the parties with respect to the Work licensed here. There
are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall
not be bound by any additional provisions that may appear in any communication from You. This License may not
be modified without the mutual written agreement of the Licensor and You.

