
R1: Buildings, apartments and owners

R2: Professionals

R3: Maintenance requests

R4: Charges

R5: Statistics

Property Management
A property manager receives requests for intervention from the owners and dispatches them to suitable
professional workers.
The main class is PropertyManager; all the classes are contained in the package
managingProperties . The class Example provides usage examples for the main methods.
The JDK documentation can be found on a local server.

The following methods allow
the registration of the buildings
in the system, together with the

number of apartments and users.
The method addBuilding() accepts the (unique) id of the building (e.g. "b1") and the number of
its apartments, and records them. It throws an exception if the id has already been used or if it not in
the range 1 to 100.
The method addOwner() accepts the (unique) id of the owner and the list of her apartments and
record them. An apartment is identified by means of a string containing the id of the building and the
number of the apartment, separated by ":" (e.g. "b1:10"). It throws an exception if the id of the
owner has already been defined, the id of the building does not exist, the number does not correspond
to an apartment, or the apartment already has an owner.
The method getBuildings() returns a sorted map that groups by number of apartments the lists
of buildings sorted alphabetically.

The method addProfessionals() accepts the name of the
profession (type of work) and the list of the ids of the relative
professional workers. The professions used in the examples are

electrician, plumber, mason (elettricista, idraulico, muratore). It throws an exception if the same
profession has already been used in a previous invocation or if a worker's id has already been used: a
worker can exercise a single profession only.
The method getProfessions() returns an ordered map of the professions (sorted alphabetically)
and the corresponding number of workers.

The method addRequest() accepts the id of the
owner, the id of the apartment (e.g. "b1:10"), and
the name of the profession; it generates a new request

in the pending state and returns the number of the request. The requests are assigned a progressive
number starting at 1. The method throws an exception if the owner, the apartment, or the profession do
not exist, or if the owner does not own the apartment.
The method assign() assigns the request (whose number is provided as an argument) to the given
professional worker and changes its status to assigned. It throws and exception if the worker does
not exercise the profession required by the request, the request does not exits, or it is not in the
pending state anymore.
The method getAssignedRequests() returns the list of the request numbers in ascending
orders.

To charge the expenses of a maintainance activity, the method charge() is
used, it accepts the request number and the expenses sum (an integer number)
and turns the request state into completed. It throws an exception if the

requests does not exits, it is not in the assigned state, the sum is not in the 0 to 1000 range.
The method getCompletedRequests() returns the list of completed request numbers (i.e. in the
completed state) in ascending order.

The methods getCharges() returns for each owner the sum of the
relative completed requests. Only the owner with non null expenses are
considered.

The method getChargesOfBuildings() returns, grouped by building, the sum of expenses by
profession. Both buildings and professions are reported in alphabetic order. Only buildings and
professions with non null expenses are considered

http://softeng.polito.it/courses/docs/api/index.html

