Effort Estimation

Version 1.2 -17/12/2020

€O Oy

(',k
AP
© 2 SO -Ft E N g © Luca Ardito, Marco Torchiano, 2020
' }Q%%Q‘; http://softeng.polito.it @
U A A
@ @




Effort estimation

= The goal is to provide a (tentative)
estimate for the effort required to
build a system

= General techniques are:
+ Analogy based
* Expert judgment
* Metrics based

SQtEng



Metrics based estimation

Effort = Sw_Size X Team_Productivity

» Different size estimation techniques:

¢ Function points
¢ Use case points

‘lll

SQtEng



Function Points

= Function Point Analysis, developed by
Allan J. Albrecht in the late 1970s

= Several variations

+ SO/
+ SO/
+ SO/
+ SO/
+ SO/

EC 19761 (COSMIC method),

EC 20926 (IFPUG method)

EC 20968 (Mk Il method),

EC 24570 (NESMA method), and
EC 29881 (FISMA method)



COSMIC FP - Principles

= Software interacts with
* its users across a boundary (interface),
+ and with storage

= User requirements can be mapped into
unique functional processes.

= Each functional process consists of
sub-processes:

¢+ data movement or
+ data manipulation



COSMIC FP - Principles

= A data movement moves a single data
group
* Entry: data from user to system.
* Exit: data from system to user.

+ Write: data from system to persistent
storage.

+ Read: data from persistent storage to
system.

= Data group: set of attributes that
describe a single object of interest

= Each process is started by its triggering
Entry data movement.

http /softeng,polito,itg



USE CASE POINTS

SQItEng



Use Case Points

= Application size is determined by:

= Number of actors
= Number of use cases
» Contextual factors

SQtEng



Components

» Technical Complexity Factors (TCF)
» Enviromental Complexity Factors (ECF)

» Productivity norms to determine effort
from size

SQtEng

10



Process

Gather inputs

Use Case Points

UUCP Computed

-+

Determine
actors weights
by classifying

actors (AW)

Identify actors

Determine
Unadjusted Use
Case Points
UUCP = AW +
ucw UUCP Computed

Determine use

Identify use case weights by
cases classifying use
cases (UCW)

Determine
Enviromental
Complexity
Factor (ECF)

Determine effort
Case Points from UCP and

UCP = UUCP * productivity
TCF * ECF norm

Adjusted Use

Determine

Technical
Complexity
Factors (TCF)

SOftEng

http://softeng.polito.it

11



Determining Actors Weight

» |dentify actors for the system

= Categorize the actors as simple, average
and complex

+ A Simple actor represents another system
with a defined API.

*+ An Average actor is another system
interacting through a protocol like TCP/IP or
it is a person interacting through a text-
based interface (like an ASCII terminal).

+ A complex actor is a user interacting through
a GUI interface



Determining Actors Weight

= Assign weight to each classified actor
according to this table:

Simple ]
Average 2
Complex 3

SQtEng

15



Determining Use Cases Weight

» |[dentify use cases for the system

= Determine complexity and hence use
case weight based on number of
transactions in the use case



Determining Use Cases Weight

= A transaction is defined as an event
occurring between the actor and
system, the event being performed
completely or not at all

Simple < 4 5
Average 4 -7 10
Complex > 7 15



Unadjusted Use Case Points

= Unadjusted Use Case Points is the sum
of actor weights and use case weights:

UUCP = AW + UCW

» Where:

* AW is total Actor Weight
+ UCW is total Use Case Weights



Technical Complexity Factor

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13

Distributed System
Response time
End User Efficiency
Complex Internal Processing
Reusable Code
Easy to install
Easy to use
Cross-platform support
Easy to change
Concurrent
Includes Security Features
Provides Access for 3 parties

User Training Required

softeng,polito,itg

v U

19



T1: Distributed System Required

= The architecture of the solution may
be centralized or single-tenant , or it
may be distributed (like an n-tier
solution) or multi-tenant.

= Higher numbers represent a more
complex architecture.

20



T2: Response Time |Is Important

» The quickness of response for users is
an important (and non-trivial) factor.

* For example, if the server load is
expected to be very low, this may be a
trivial factor.

= Higher numbers represent increasing
importance of response time

¢ Search engine would have a high number
+ A daily news aggregator a low number

http /softeng,polito,itg 2 ]



T3: End User Efficiency

= |s the application being developed to
optimize on user efficiency, or just

capability?
= Higher numbers represent projects

that rely more heavily on the
application to improve user efficiency

22



T4: Complex Internal Processing

= |s there a lot of difficult algorithmic
work to do and test?

= Complex algorithms (resource
leveling, time-domain systems
analysis, OLAP cubes) have higher
numbers. Simple database queries
would have low numbers.



T5: Reusable Code Is a Focus

= |s heavy code reuse an objective?
* Code reuse reduces the amount of effort
required to deploy a project.

¢ |t also reduces the amount of time
required to debug a project.

- E.g., a shared library function can be re-used
multiple times, and fixing the code in one
place can resolve multiple bugs.

= The higher the level of re-use, the
the number.



To: Ease of Installation

" |s ease of installation for end users a
key factor?

= The higher the ease required (implying
a lower level of competence required
from the users), the higher the
number.



T7: Usability

= |s ease of use a primary criteria for
acceptance?

= The greater the importance of
usability, the higher the number.

SQtEng

26



T8: Cross—Platform Support

= |s multi-platform support required?

= The more platforms that have to be
supported the higher the value

¢ Could be browser versions, mobile
devices, or OS (e.g. Windows/OSX/Unix)



T9: Easy To Change

= Does the customer require the ability
to change or customize the
application in the future?

= The more change / customization is
required in the future, the higher the
rating.

28



T10: Concurrent

= Will you have to address database
locking and other concurrency issues?

¢ Concurrency requirements typically bring
issues concerning conflicts in data access
= The more attention you have likely to
spend to resolving conflicts in the data
or application, the higher the value



T11: Includes Security Features

= Can standard security solutions be
leveraged, or must custom code be
developed?

= The more custom security work you
have to do (field level, page level, or
role-based security, for example), the
higher the value.



T12: Access for 31 parties

= Will the application require the use of
third party controls or libraries?
* Like re-usable code, third party code can

reduce the effort required to deploy a
solution.

= The more third party code (and the
more reliable the third party code), the
the number.



T13: User Training Required

= How much user training is required? Is
the application complex, or
supporting complex activities?

= The longer it takes users achieve a
level of mastery of the product, the
higher the value.



Technical Complexity Factor

» TCFactor = X Tf
*+ where Tf is Wt x Rating for each factor

= Tech Complexity Factor

TCF = 0.6 + 0.01 x TFactor

SQtEng

33



Calculating Environmental Complexity Factor

Description Weigth Rating EF (W*R)
(0-5)

Fl Familiarity With The Project 1.5
F2 Application Experience 0.5
F3 Object Oriented Experience 1

F4 Lead Analyst Capability 0.5
F5 Motivation 1

F6 Stable requirements 2

F7 Part Time Workers ~1
F8 Difficulty of programming language -1

SOftEng 34



Familiarity With The Project

= How much experience does your team
have working in this domain?

* The domain of the project will be a reflection
of what the software is intended to
accomplish, not the implementation
technology

- E.g., for an insurance compensation system
written in java, you care about the team’s
experience in the insurance compensation space -
not how much java they’ve written.

= Higher levels of experience get a higher
number.



Application Experience

= How much experience does your team
have with the application.

+ This will only be relevant when making
changes to an existing application.

= Higher numbers represent more
experience.

* For a new application, everyone’s
experience will be 0.



OO Programming Experience

= How much experience does your team
have at O0O?

* |t can be easy to forget that many people
have no object oriented programming
experience if you are used to having it.

* A user-centric or use-case-driven project
will have an inherently OO structure in
the implementation.

= Higher numbers represent more OO
experience.



Lead Analyst Capability

= How knowledgeable and capable is the
person responsible for the
requirements?
+ Bad requirements are the number one
killer of projects - the Standish Group

reports that 40% to 60% of defects come
from bad requirements.

= Higher numbers represent increased
skill and knowledge.



Motivation

= How motivated is your team?

+ Consultants working at the project in the
context of a body rental contract will
likely be little motivated

= Higher numbers represent more
motivation.

SQtEng

39



Stable Requirements

= Changes in requirements can cause
increases in work.

* The way to avoid this is by planning for

change and instituting a timing system
for managing those changes.

* Most people don’t do this, and some
rework will be unavoidable.

= Higher numbers represent less change
(or a more effective system for
managing change).



Part Time Staff

= How much of the team staff is working
part-time?
* Often outside consultants, and developers
are splitting their time across projects.

+ Context switching and other intangible
factors make these team members less
efficient

= Higher numbers reflect team members
that are mostly part time

= Note: weight for is factor is negative

http /softeng,polito,itg 4 ]



Difficult Programming Language

= How difficult is the language for the
members of the development team

+ Harder languages represent higher
numbers.

+ Difficulty is in the eye of the be-coder

- Java might be difficult for a Fortran
orogrammer.

- It is difficulty for the team members, not
abstract difficulty.

= Note: weight for is factor is negative.

http /softeng,polito,itg

42



Environmental Complexity Factor

= EFactor = X Ef
+ where Ef is Wt x Rating for each factor

= Environmental Complexity Factor
ECF =1.4 + (-0.03 xEFactor)

SOFftEng 43



Adjusted Use Case Points

= Adjusted Use Case Points (UCP) is:

UCP = UUCP x TCF x ECF

* where UUCP is unadjusted Use Case
Points

SOftEng 44



Effort Calculation in person hours

= Let the number of factors below 3 in F1-F6 in
the Environment Factor Table be nl

» Let number of factors above 3 in F7-F8 be n2.

» [fnT+n2 <=2 10-20 person hrs per UCP

1.25-2.5 person days per UCP
3-4 14-28 person hrs per UCP

1.75-3.5 person days per UCP
>4 18-36 person hrs per UCP
2.25-4.5 person days per UCP

http /softeng,polito,itg



UCP - Key Takeaways

= The Use case points method can produce
estimates close to actual effort in several
projects.

= This indicates that the use case points
method may support expert knowledge
when a use case model for the project is
available.

= Some tailoring to the company may be
useful to obtain maximum benefits from
the method.

¢ Customize the productivity norm for the
organization

htt /softeng,polito,itg 4 6



EXAMPLE

SQItEng

47



Use Case - Waiting List

= A well-known restaurant in a shopping
center uses a system for the
management of the waiting list.

= When a customer arrives, the waiter,
once he knows the number of people
in the group, check the estimated
waiting time for a table on the system



Use Case Narrative

Use Case: Waiting List
Level: User-goal

Intention in context: estimate the
waiting time

Primary Actor: Waiter

Stakeholder interest; customer wants
to have a precise waiting time

49



Use Case Narrative

= Main Success Scenario

1. Waiter asks for a time estimate

2. System requires the number of people
3. Waiter enters the number of people

4. System provides the estimate

Extensions:
¢ 43 no available tables, use case fails

50



Use Case Waiting List - AW

= Determine Actor Weight

= User Waliter actor

= GUI actor -> complex
= AW = 3

SQtEng

51



Use Case Waiting List - UCW

= [Transactions:

1. Waiter asks for a time estimate

2. System requires the number of people
3. Waiter enters the number of people
4. System provides the estimate

= Total of 3 transactions (waiter-system)
= Simple use case, UCW =5

52



Use Case Waiting List - UUCP

= UUCP = AW + UCW

3+5=28

SQtEng

53



Calculating Technical Complexity Factor

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13

Distributed System
Response time
End User Efficiency
Complex Internal Processing
Reusable Code
Easy to install
Easy to use
Cross-platform support
Easy to change
Concurrent
Includes Security Features
Provides Access for 3" parties
User Training Required

P ofteng,polito,itg

vl Ul

2.0
4.0
3.0
0.0
1.0
0.5
0.5
0.0
1.0
0.0
2.0
0.0
0.0

54



Environmental Complexity Factor

Fl Familiarity With The Project 1.5 3 4.5
F2 Application Experience 0.5 4 2.0
F3 Object Oriented Experience 1 4 4.0
F4 Lead Analyst Capability 0.5 5 2.5
F5 Motivation 1 5 5.0
F6 Stable requirements 2 5 10.0
F7 Part Time Workers -1 0 0.0
F8 Difficulty of programming language -1 0 0.0

TOTAL 28.0

SOftEng

55



Use Case Waiting List - TCF, ECF

TCF=0.6+(0.01*14)=0.74

ECF =14+ (-0.03 * 28) = 0.56

SQtEng

56



Use Case Waiting List - Effort

= UUCP =38

= TCF=0.74

= ECF =0.56

= UCP=870.74 * 0.56 = 3.32

* Productivity norm:

*n1=0

*n2=0
= 10 Phrs / UCP = 1.25 Pdays / UCP
» Effort =3.32* 10 =33.15 Phrs

SOftEng 57



Average person costs

= Junior Developer = 250 € per day
= Senior Developer = 500 € per day
= Junior Analyst = 300 € per day

= Senior Analyst = 600 € per day

SQtEng

58



System cost

= Assuming an average developer cost
of 300 €/day

» Effort: 33.15 Phrs = 4.14 Pdays
= Cost =1 243.20 €

SQtEng

59



