
Effort Estimation

© Luca Ardito, Marco Torchiano, 2020

Version 1.2 - 17/12/2020

Effort estimation
§ The goal is to provide a (tentative)

estimate for the effort required to
build a system

§ General techniques are:
w Analogy based
w Expert judgment
w Metrics based

3

Metrics based estimation

Effort = Sw_Size × Team_Productivity

§ Different size estimation techniques:
w Function points
w Use case points
w …

4

Function Points
§ Function Point Analysis, developed by

Allan J. Albrecht in the late 1970s
§ Several variations

w ISO/IEC 19761 (COSMIC method),
w ISO/IEC 20926 (IFPUG method)
w ISO/IEC 20968 (Mk II method),
w ISO/IEC 24570 (NESMA method), and
w ISO/IEC 29881 (FiSMA method)

5

COSMIC FP - Principles
§ Software interacts with

w its users across a boundary (interface),
w and with storage

§ User requirements can be mapped into
unique functional processes.

§ Each functional process consists of
sub-processes:
w data movement or
w data manipulation

6

COSMIC FP - Principles
§ A data movement moves a single data

group
w Entry: data from user to system.
w Exit: data from system to user.
w Write: data from system to persistent

storage.
w Read: data from persistent storage to

system.
§ Data group: set of attributes that

describe a single object of interest
§ Each process is started by its triggering

Entry data movement.

7

USE CASE POINTS

8

9

Use Case Points
§ Application size is determined by:

§ Number of actors
§ Number of use cases
§ Contextual factors

10

Components
§ Technical Complexity Factors (TCF)
§ Enviromental Complexity Factors (ECF)
§ Productivity norms to determine effort

from size

11

Process

Determining Actors Weight
§ Identify actors for the system
§ Categorize the actors as simple, average

and complex
w A Simple actor represents another system

with a defined API.
w An Average actor is another system

interacting through a protocol like TCP/IP or
it is a person interacting through a text-
based interface (like an ASCII terminal).

w A complex actor is a user interacting through
a GUI interface

14

Determining Actors Weight
§ Assign weight to each classified actor

according to this table:

15

Actor Type Weight Factor
Simple 1
Average 2
Complex 3

Determining Use Cases Weight
§ Identify use cases for the system
§ Determine complexity and hence use

case weight based on number of
transactions in the use case

16

Determining Use Cases Weight
§ A transaction is defined as an event

occurring between the actor and
system, the event being performed
completely or not at all

17

Use Case Type No. Transactions Weight Factor
Simple < 4 5

Average 4 – 7 10
Complex > 7 15

Unadjusted Use Case Points
§ Unadjusted Use Case Points is the sum

of actor weights and use case weights:

UUCP = AW + UCW

§ Where:
w AW is total Actor Weight
w UCW is total Use Case Weights

18

Technical Complexity Factor

19

Factor Description Weight Rating (0-5) TF (W*R)
T1 Distributed System 2
T2 Response time 2
T3 End User Efficiency 1
T4 Complex Internal Processing 1
T5 Reusable Code 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Cross-platform support 2
T9 Easy to change 1

T10 Concurrent 1
T11 Includes Security Features 1
T12 Provides Access for 3rd parties 1
T13 User Training Required 1

T1: Distributed System Required

§ The architecture of the solution may
be centralized or single-tenant , or it
may be distributed (like an n-tier
solution) or multi-tenant.

§ Higher numbers represent a more
complex architecture.

20

T2: Response Time Is Important

§ The quickness of response for users is
an important (and non-trivial) factor.
w For example, if the server load is

expected to be very low, this may be a
trivial factor.

§ Higher numbers represent increasing
importance of response time
w Search engine would have a high number
w A daily news aggregator a low number

21

T3: End User Efficiency

§ Is the application being developed to
optimize on user efficiency, or just
capability?

§ Higher numbers represent projects
that rely more heavily on the
application to improve user efficiency

22

T4: Complex Internal Processing

§ Is there a lot of difficult algorithmic
work to do and test?

§ Complex algorithms (resource
leveling, time-domain systems
analysis, OLAP cubes) have higher
numbers. Simple database queries
would have low numbers.

23

T5: Reusable Code Is a Focus

§ Is heavy code reuse an objective?
w Code reuse reduces the amount of effort

required to deploy a project.
w It also reduces the amount of time

required to debug a project.
– E.g., a shared library function can be re-used

multiple times, and fixing the code in one
place can resolve multiple bugs.

§ The higher the level of re-use, the
lower the number.

24

T6: Ease of Installation

§ Is ease of installation for end users a
key factor?

§ The higher the ease required (implying
a lower level of competence required
from the users), the higher the
number.

25

T7: Usability

§ Is ease of use a primary criteria for
acceptance?

§ The greater the importance of
usability, the higher the number.

26

T8: Cross-Platform Support

§ Is multi-platform support required?
§ The more platforms that have to be

supported the higher the value
w Could be browser versions, mobile

devices, or OS (e.g. Windows/OSX/Unix)

27

T9: Easy To Change

§ Does the customer require the ability
to change or customize the
application in the future?

§ The more change / customization is
required in the future, the higher the
rating.

28

T10: Concurrent

§ Will you have to address database
locking and other concurrency issues?
w Concurrency requirements typically bring

issues concerning conflicts in data access
§ The more attention you have likely to

spend to resolving conflicts in the data
or application, the higher the value

29

T11: Includes Security Features

§ Can standard security solutions be
leveraged, or must custom code be
developed?

§ The more custom security work you
have to do (field level, page level, or
role-based security, for example), the
higher the value.

30

T12: Access for 3rd parties

§ Will the application require the use of
third party controls or libraries?
w Like re-usable code, third party code can

reduce the effort required to deploy a
solution.

§ The more third party code (and the
more reliable the third party code), the
lower the number.

31

T13: User Training Required

§ How much user training is required? Is
the application complex, or
supporting complex activities?

§ The longer it takes users achieve a
level of mastery of the product, the
higher the value.

32

Technical Complexity Factor
§ TCFactor = ∑ Tf

w where Tf is Wt × Rating for each factor

§ Tech Complexity Factor

TCF = 0.6 + 0.01 × TFactor

33

34

Calculating Environmental Complexity Factor
Factor Description Weigth Rating

(0-5)
EF (W*R)

F1 Familiarity With The Project 1.5

F2 Application Experience 0.5

F3 Object Oriented Experience 1

F4 Lead Analyst Capability 0.5

F5 Motivation 1

F6 Stable requirements 2

F7 Part Time Workers -1

F8 Difficulty of programming language -1

Familiarity With The Project

§ How much experience does your team
have working in this domain?
w The domain of the project will be a reflection

of what the software is intended to
accomplish, not the implementation
technology
– E.g., for an insurance compensation system

written in java, you care about the team’s
experience in the insurance compensation space –
not how much java they’ve written.

§ Higher levels of experience get a higher
number.

35

Application Experience

§ How much experience does your team
have with the application.
w This will only be relevant when making

changes to an existing application.
§ Higher numbers represent more

experience.
w For a new application, everyone’s

experience will be 0.

36

OO Programming Experience

§ How much experience does your team
have at OO?
w It can be easy to forget that many people

have no object oriented programming
experience if you are used to having it.

w A user-centric or use-case-driven project
will have an inherently OO structure in
the implementation.

§ Higher numbers represent more OO
experience.

37

Lead Analyst Capability

§ How knowledgeable and capable is the
person responsible for the
requirements?
w Bad requirements are the number one

killer of projects – the Standish Group
reports that 40% to 60% of defects come
from bad requirements.

§ Higher numbers represent increased
skill and knowledge.

38

Motivation

§ How motivated is your team?
w Consultants working at the project in the

context of a body rental contract will
likely be little motivated

§ Higher numbers represent more
motivation.

39

Stable Requirements

§ Changes in requirements can cause
increases in work.
w The way to avoid this is by planning for

change and instituting a timing system
for managing those changes.

w Most people don’t do this, and some
rework will be unavoidable.

§ Higher numbers represent less change
(or a more effective system for
managing change).

40

Part Time Staff

§ How much of the team staff is working
part-time?
w Often outside consultants, and developers

are splitting their time across projects.
w Context switching and other intangible

factors make these team members less
efficient

§ Higher numbers reflect team members
that are mostly part time

§ Note: weight for is factor is negative

41

Difficult Programming Language

§ How difficult is the language for the
members of the development team
w Harder languages represent higher

numbers.
w Difficulty is in the eye of the be-coder

– Java might be difficult for a Fortran
programmer.

– It is difficulty for the team members, not
abstract difficulty.

§ Note: weight for is factor is negative.

42

Environmental Complexity Factor

§ EFactor = ∑ Ef
w where Ef is Wt × Rating for each factor

§ Environmental Complexity Factor
ECF = 1.4 + (-0.03×EFactor)

43

Adjusted Use Case Points
§ Adjusted Use Case Points (UCP) is:

UCP = UUCP × TCF × ECF

w where UUCP is unadjusted Use Case
Points

44

45

Effort Calculation in person hours
§ Let the number of factors below 3 in F1-F6 in

the Environment Factor Table be n1

§ Let number of factors above 3 in F7-F8 be n2.

§ If n1+n2 <= 2 10-20 person hrs per UCP
1.25-2.5 person days per UCP

3-4 14-28 person hrs per UCP
1.75-3.5 person days per UCP

> 4 18-36 person hrs per UCP
2.25-4.5 person days per UCP

UCP – Key Takeaways
§ The Use case points method can produce

estimates close to actual effort in several
projects.

§ This indicates that the use case points
method may support expert knowledge
when a use case model for the project is
available.

§ Some tailoring to the company may be
useful to obtain maximum benefits from
the method.
w Customize the productivity norm for the

organization

46

EXAMPLE

47

48

Use Case – Waiting List
§ A well-known restaurant in a shopping

center uses a system for the
management of the waiting list.

§ When a customer arrives, the waiter,
once he knows the number of people
in the group, check the estimated
waiting time for a table on the system

Use Case Narrative
§ Use Case: Waiting List
§ Level: User-goal
§ Intention in context: estimate the

waiting time
§ Primary Actor: Waiter
§ Stakeholder interest: customer wants

to have a precise waiting time

49

Use Case Narrative
§ Main Success Scenario

1. Waiter asks for a time estimate
2. System requires the number of people
3. Waiter enters the number of people
4. System provides the estimate

§ Extensions:
w 4a no available tables, use case fails

50

51

Use Case Waiting List - AW
§ Determine Actor Weight

§ User Waiter actor
§ GUI actor -> complex
§ AW = 3

52

Use Case Waiting List - UCW
§ Transactions:

1. Waiter asks for a time estimate
2. System requires the number of people
3. Waiter enters the number of people
4. System provides the estimate

§ Total of 3 transactions (waiter-system)
§ Simple use case, UCW = 5

Use Case Waiting List - UUCP
§ UUCP = AW + UCW

3 + 5 = 8

53

54

Calculating Technical Complexity Factor
Factor Description Weight Rating (0-5) TF (W*R)

T1 Distributed System 2 1 2.0
T2 Response time 2 2 4.0
T3 End User Efficiency 1 3 3.0
T4 Complex Internal Processing 1 0 0.0
T5 Reusable Code 1 1 1.0
T6 Easy to install 0.5 1 0.5
T7 Easy to use 0.5 1 0.5
T8 Cross-platform support 2 0 0.0
T9 Easy to change 1 1 1.0

T10 Concurrent 1 0 0.0
T11 Includes Security Features 1 2 2.0
T12 Provides Access for 3rd parties 1 0 0.0
T13 User Training Required 1 0 0.0

TOTAL 14.0

Environmental Complexity Factor

55

Factor Description Weight Rating (0-5) EF (W*R)

F1 Familiarity With The Project 1.5 3 4.5
F2 Application Experience 0.5 4 2.0
F3 Object Oriented Experience 1 4 4.0
F4 Lead Analyst Capability 0.5 5 2.5
F5 Motivation 1 5 5.0
F6 Stable requirements 2 5 10.0
F7 Part Time Workers -1 0 0.0
F8 Difficulty of programming language -1 0 0.0

TOTAL 28.0

56

Use Case Waiting List – TCF, ECF

TCF = 0.6 + (0.01 * 14) = 0.74

ECF = 1.4 + (-0.03 * 28) = 0.56

57

Use Case Waiting List – Effort
§ UUCP = 8
§ TCF = 0.74
§ ECF = 0.56
§ UCP = 8 * 0.74 * 0.56 = 3.32
§ Productivity norm:

w n1 = 0
w n2 = 0

§ 10 Phrs / UCP = 1.25 Pdays / UCP
§ Effort = 3.32 * 10 = 33.15 Phrs

Average person costs
§ Junior Developer = 250 € per day
§ Senior Developer = 500 € per day
§ Junior Analyst = 300 € per day
§ Senior Analyst = 600 € per day

58

System cost
§ Assuming an average developer cost

of 300 €/day

§ Effort: 33.15 Phrs = 4.14 Pdays
§ Cost = 1 243.20 €

59

