
Requirements Engineering

Version 1.3.1 – 22 October 2020

© Maurizio Morisio, Marco Torchiano, 2020

https://bit.ly/PolitoSIA

2

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§ Attribution. You must attribute the work in the manner specified by

the author or licensor.

§ Non-commercial. You may not use this work for commercial purposes.

§ No Derivative Works. You may not alter, transform, or build upon this
work.

§ For any reuse or distribution, you must make clear to others the
license terms of this work.

§ Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

Software Development

Requirements
Analysis

System
Design

Detailed
Design

Coding

Unit testing

Integration
testing

System
testing

Customer
Needs

Acceptance
testing

Software Development Reality

Requirements engineering
§ The process of establishing the

services that the customer requires
from a system and the constraints
under which it operates and is
developed.

§ The requirements themselves are the
descriptions of the system services
and constraints that are generated
during the requirements engineering
process.

Activities in req. engineering
§ Elicitation
§ Analysis
§ Formalization
§ V&V (verification and validation)

Elicitation
§ Elicit

1. : to call forth or draw out (something,
such as information or a response)

2. : to draw forth or bring out (something
latent or potential)

– From latin elicere

§ Aim to understand stakeholder needs
and identify potential solutions that
may meet those needs

https://www.merriam-webster.com/dictionary/elicit

Elicitation
§ Use different techniques

w Brainstorming
w Document analysis
w Focus Group
w Interface Analysis
w Interviews
w Observation (job shadowing)
w Prototyping
w Requirements workshops
w Survey/questionnaire

Stakeholder
§ A party that has an interest or concern

in the system
§ Includes:

w Users of the system
w Procurer of the system development
w Anybody affected by the system usage

– Ethical
– Social
– Etc…

Requirements vs. Design
§ Requirements:

What the system should do

§ Design:

How the system is done

What is a requirement?
§ Ranges from a high-level abstract

statement of a service or of a system
constraint to a detailed mathematical
functional specification.

§ Requirements may serve dual function
w Basis for a bid for a contract - therefore

must be open to interpretation
w Basis for the contract itself - therefore

must be defined in detail

Types of requirement
§ User requirements

– Statements in natural language plus diagrams of
the services the system provides and its
operational constraints. Written for customers.

§ System requirements
(a.k.a. developer requirements)

– A structured document setting out detailed
descriptions of the system’s functions, services
and operational constraints. Defines what should
be implemented so may be part of a contract
between client and contractor.

Definitions and specifications
The software must provide a means of representing
and accessing external files edited by other tools

1.1 The user should be provided with facilities to define the
type of external files

1.2 Each external file type may have an associated tool
which may be applied to the file

1.3 Each external file type may be represented as a specific
icon on the user’s display

1.4 Facilities should be provided for the icon representing an
external file type to be defined by the user

1.5 When a user selects an icon representing an external
file the effect of that selection is to apply the tool
associated with the external file type to the file
represented by the selected icon

User requirement definition

System requirements specification

Requirements readers

System
Requirements

Software Design
Specification

User
Requirements

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Client engineers
System architects
Software developers

Requirements features
§ Correct
§ Unambiguous
§ Complete
§ Consistent
§ Ranked for importance and/or stability
§ Verifiable
§ Modifiable
§ Traceable

Correct
§ Every requirement stated is one that

the software shall meet
§ Customer or users can determine if

the requirement correctly reflects their
actual needs
w Traceability makes this easier

Unambiguous
§ Every requirement has only one

interpretation
§ Each characteristic of the final product

must be described using a single
unique term

§ Both to those who create it and to
those who use it.

Complete
§ Include all significant requirements

w Address external requirements imposed
by system specification

§ Define response to all realizable
inputs
w Both correct or incorrect

§ Define all terms and unit of measure

Internally Consistent
§ No subset of requirements is in

conflict
w Characteristics of real-world objects (e.g.

GUI
w Logical or temporal
w Different terms for the same object

Completeness vs. consistency
§ In principle, requirements should be both

complete and consistent.
w Complete: they should include descriptions

of all facilities required.
w Consistent: there should be no conflicts or

contradictions in the descriptions of the
system facilities.

w In practice, it is impossible to produce a
document that is both complete and
consistent

– See: Gödel's incompleteness theorems

Ranked
By:
§ Value
§ Necessity

w Essential
w Conditional
w Optional

§ Stability (in the future)

Verifiable
§ There exists some finite cost-effective

process with which a person or
machine can check that the software
product meets the requirement.
w Ambiguous requirements are not

verifiable

Modifiable
§ structure and style such that any

changes can be made easily,
completely, and consistently while
retaining the structure and style
w Well structured
w Non redundant
w Separate requirements

Traceable
§ Backward

w explicitly referencing source in earlier
documents

§ Forward
w unique name or reference number

Defects in requirements
§ Omission (incompleteness)
§ Inconsistency (contradiction)
§ Ambiguity
§ Incorrect Fact
§ Extraneous Information

w Over-specification (design)
§ Lack of structure
§ Redundancy

Functional vs. Non-Functional
§ Functional requirements (FR)

w Statements of services the system should provide,
how the system should react to particular inputs and
how the system should behave in particular
situations.

§ Non-functional requirements (NFR)
w A.k.a. Quality requirements
w constraints on the services or functions offered by

the system such as timing constraints, constraints on
the development process, standards, etc.

§ Domain requirements
– Requirements that come from the application domain of

the system and that reflect characteristics of that domain.

Non-functional requirements
§ They define system properties and

constraints e.g. reliability, response time and
storage requirements.
w Constraints are I/O device capability, system

representations, etc.
§ Process requirements may also be specified

mandating a particular tool, programming
language, or development method.

§ Non-functional requirements may be more
critical than functional requirements: if they
are not met, the system is useless.

Non-functional requirements

Non-functional req.: examples
§ Product requirement

– 8.1 The user interface for LIBSYS shall be implemented
as simple HTML without frames or Java applets.

§ Organisational requirement
– 9.3.2 The system development process and deliverable

documents shall conform to the process and
deliverables defined in XYZCo-SP-STAN-95.

§ External requirement
– 7.6.5 The system shall not disclose any personal

information about customers apart from their name
and reference number to the operators of the system.

Software Qualities

Quality
in use

Quality
in use

Process
quality

Internal
quality

External
quality

Quality
in use

Process
System and
Software product

Effect of software
product

Internal
measures

Process
measures

Quality in use
measures

Contexts
of use

influences influences influences

depends on depends on depends on

Data
quality

influence

Data
measures

depends on depends on

Adapted from ISO/IEC 25020

External
measures

ISO SQuaRE – Standard Family

2503x

Quality
Requirements

2504x

Quality
Evaluation

2501x
Quality Model

2500x
Quality Management

2502x
Quality Measurement

31

ISO 25010 – Quality model

ISO 25010

Quality in use

Context coverage
Flexibility

Context completeness

Freedom from risk

Environmental risk mitigation

Health and safety risk mitigation

Economic risk mitigation

Satisfaction

Comfort

Pleasure

Trust

Usefulness

Efficiency

Effectiveness
Product quality

Portability

Replaceability

Installability

Adaptability

Maitainability

Testability

Modifiability

Analysability

Reusability

Modularity

Security

Authenticity

Accountability

Non-repudiation

Integrity

Confidentiality

Realiability

Recoverability

Fault tolerance

Availability

Maturity

Usability

Accessibility

UI aesthetic

User error protection

Operability

Learnability

Recognizability

Compatibility
Interoperability

Co-existence

Performance efficiency

Capacity

Resource utilization

Time behavior

Functional suitability

Appropriateness

Correctness

Completeness

Internal vs. External
§ Internal features concern the static

attributes of a software product
w verified by review, inspection, simulation

and/or automated tools
§ External features concern the behavior

of a system
w verified and/or validated by executing the

software product during testing and
operation

Goals and requirements
§ Non-functional requirements may be very

difficult to state precisely and imprecise
requirements may be difficult to verify.

§ Goal
w A general intention of the user such as ease of use.

§ Verifiable non-functional requirement
w A statement with a measure that can be objectively tested.

§ Goals are helpful to developers as they
convey the intentions of the system users.

Examples
§ System goal

w The system should be easy to use by
experienced controllers and should be
organised in such a way that user errors are
minimised.

§ Verifiable non-functional requirement
w Experienced controllers shall be able to use

all the system functions after a total of two
hours training. After this training, the
average number of errors made by
experienced users shall not exceed two per
day.

NFR measures
Property Measure

Speed
Processed transactions/second
User/Event response time
Screen refresh time

Size M Bytes
Number of ROM chips

Ease of use Training time
Number of help frames

Reliability

Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness
Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

Natural language
§ Lack of clarity

w Precision is difficult without making the
document difficult to read.

§ Requirements confusion
w Functional and non-functional

requirements tend to be mixed-up.
§ Requirements amalgamation

w Several different requirements may be
expressed together.

The requirements document
§ The requirements document is the

official statement of what is required of
the system developers.

§ Should include both a definition of user
requirements and a specification of the
system/developer requirements.

§ It is NOT a design document. As far as
possible, it should set of WHAT the
system should do rather than HOW it
should do it

Users of requirements
System

customers

Managers

System
engineers

System test
engineers

System
maintenance

engineers

Specify the requirements and read them
to check that they meet their needs. They

specify changes to the requirements

Use the requirements document to plan a
bid for the system and to plan the system

development process

Use the requirements to understand what
system is to be developed

Use the requirements to develop
validation tests for the system

Use the requirements to help understand
the system and the relationship between

its parts

IEEE requirements standard
§ IEEE Std 830:1998

w Superseded by ISO/IEC/IEEE 29148:2011
§ Defines a generic structure for a

requirements document that must be
instantiated for each specific system.
w Introduction.
w Overall description.
w Specific requirements.
w Appendixes.
w Index.

Req. document structure
§ Preface
§ Introduction
§ Glossary
§ User requirements definition
§ System architecture
§ System requirements specification
§ System models
§ System evolution
§ Appendices
§ Index

Organizing requirements
§ Mode
§ User class
§ Object
§ Feature
§ Stimulus
§ Functional hierarchy

Requirements Document lightweight

1. Purpose and scope
2. The terms used / Glossary
3. The use cases
4. The technology to be used
5. Other various requirements
6. Human backup, legal, political,

organizational issues

Requirements Document
1. Purpose and scope
2. The terms used / Glossary
3. The use cases
4. The technology to be used
5. Other various requirements
6. Human backup, legal, political,

organizational issues

• What is the overall scope and goal?

• Stakeholders (who cares?)

• What is in scope, what is out of scope

Requirements Document
1. Purpose and scope
2. The terms used / Glossary
3. The use cases
4. The technology to be used
5. Other various requirements
6. Human backup, legal, political,

organizational issues

Requirements Document
1. Purpose and scope
2. The terms used / Glossary
3. The use cases
4. The technology to be used
5. Other various requirements
6. Human backup, legal, political,

organizational issues

• The primary actors and their general goals

• The business use cases (operations concepts)

• The system use cases

Requirements Document
1. Purpose and scope
2. The terms used / Glossary
3. The use cases
4. The technology to be used
5. Other various requirements
6. Human backup, legal, political,

organizational issues
• What technology requirements are there for this

system?

• What systems will this system interface with, with
what requirements?

Requirements Document
1. Purpose and scope
2. The terms used / Glossary
3. The use cases
4. The technology to be used
5. Other various requirements
6. Human backup, legal, political,

organizational issues

• Development process
• Business rules
• Performance
• Operations, security, documentation
• Use and usability
• Maintenance and portability
• Unresolved or deferred

Requirements Document
1. Purpose and scope
2. The terms used / Glossary
3. The use cases
4. The technology to be used
5. Other various requirements
6. Human backup, legal, political,

organizational issues

• What is the human backup to system operation?
• What legal, what political requirements are there?
• What are the human consequences of completing

this system?
• What are the training requirements?
• What assumptions, dependencies are there on

the human environment?

Guidelines for requirements
§ Define a standard format and use it

for all requirements.
§ Use language in a consistent way. Use

shall for mandatory requirements,
should for desirable requirements.

§ Use text highlighting to identify key
parts of the requirement.

§ Avoid the use of computer jargon.

V&V of requirements
§ Natural language, UML

w Inspection, reading
– By user, by developer

§ UML
w Some syntactic check by tools

§ Formal language
w Model checking

Tools
§ RequisitePro, Doors, Serena RM
§ Word, Excel
§ UML tools

w Powerpoint, Visio, specialized tools
(StarUML)

References
§ IEEE Recommended Practice for

Software Requirements Specifications
(IEEE Std 830-1998, Revision of IEEE
Std 830-1993)

§ ISO/IEC 250xx:2011 - Systems and
software engineering - Systems and
software Quality Requirements and
Evaluation (SQuaRE)

Key points
§ Requirements set out what the system

should do and define constraints on its
operation and implementation.

§ User requirements are high-level
statements of what the system should
do. User requirements should be written
using natural language, tables and
diagrams.

§ System requirements are intended to
communicate the functions that the
system should provide.

Key points
§ Functional requirements set out services

the system should provide.
§ Non-functional requirements constrain

the system being developed or the
development process.

§ A software requirements document is an
agreed statement of the system
requirements.

§ The IEEE standard is a useful starting
point for defining more detailed specific
requirements standards.

