
Business Process Modeling

© Maurizio Morisio, Marco Torchiano, Luca Ardito 2012-2020

Version 3.0.0 - 7/10/2020

2

Licensing Note
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§ Attribution. You must attribute the work in the manner specified by

the author or licensor.

§ Non-commercial. You may not use this work for commercial
purposes.

§ No Derivative Works. You may not alter, transform, or build upon
this work.

§ For any reuse or distribution, you must make clear to others the
license terms of this work.

§ Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

BP Aspects
§ Information

w Conceptual modeling
– UML Class diagrams
– (Entity-Relationships)

§ Process flow
w Process modeling

– UML Activity Diagrams
– BPMN

§ Interaction
w Functional modeling

– Use cases

3

Objectives
§ Describe, as precisely as possible, a

process (or workflow)
§ Communicate, document, analyze,

validate the workflow
§ Implement (execute) it

w Only formal notations allow this step

Issues
§ Formal notations

w Executable
w But model can be very complex for high

level of detail
§ Semiformal

w Not executable
w But can be starting point for high level

analysis

Notations
§ Formal

w UML Activity Diagrams
w BPMN
w BPEL

§ Semi formal
w IDEF0
w Data Flow Diagrams

BPMN
Process Modeling

8

BPMN
§ Business Process Modeling Notation

w Business Process Diagram (BPD)
§ Business Process Management

Initiative
w http://www.bpmi.org/

§ Endorsed by major players

9

BPMI.org
§ Business Process Modeling Language (BPML)

w Meta-language for the modeling of business
processes

w provides an abstracted execution model for
business processes based on FSM

§ Business Process Modeling Notation (BPMN)
w provides a graphical notation for expressing

business processes
w provides a binding between graphical elements

and the constructs of BPML

BPMN

Business Process Model and Notation:

▪ a graphical representation for
specifying business processes in a
business process model

Goal

§ Capture
wActivities

wRules

wResponsibilities

12

BPMN - Elements
§ Four basic element categories

w Events
w Activities/Tasks
w Connecting objects/Flow
w Gateways

Terminal events
§ Start event

w Represents the starting point
of the process execution

w Creates a new token
§ End event

w Indicate that the processing
has completed

w Destroys all tokens

Start

End

Activities

Task that are performed in the
process by humans, by automation,
or by subprocesses.

Activities

▪ Manual task
⬥ The user performs some activity outside

the IS but eventually a track is recorded
inside the IS

▪ User task
⬥ The user interacts with the system, by

either getting or entering information
▪ Services task

⬥ The IS performs some operation without
the support of the user

Activities

16

Task

Sub-Process

Loop

Multiple
instances

Decomposition

Sequence Flow

Indicates the order of execution of
the activities

18

Connecting Objects
§ Sequence Flow

w Shows the order that activities will be
performed in a Process

§ Message Flow
w Shows the flow of messages between two

separateProcess Participants (e.g. two
Pools)

§ Association
w Associates data, text, and other Artifacts

with FlowObjects

Gateways

Route the flow of execution

Exclusive (XOR)Parallel (AND)

Execution Semantics

A process instance can be created any
time it is required
A token is created every time a
process is activated
The token marks the current phase of
the process instance
The token brings information specific
for the corresponding instance of the
process

Start

End

Execution Semantics
§ A token flows through the

diagram
§ The token is created on the

start event
§ The token complies with

the process rules
§ The token is eventually

destroyed at end event

Execution Semantics
§ When a token arrives at an action

w The action is enabled: can be performed
– The information systems informs the intended

user she can start the action
w No time is defined for starting the activity

– It starts when the user wishes
w No duration is defined for the activity

– It takes as much time as the user needs

§ The token can leave the action as soon
as the activity is completed.

Execution semantics
§ Users taking part in the process

execution have a worklist associated with
them

§ A new item is added to the worklist when
a task assigned to the used is enabled
w i.e. the token arrives in the activity

§ The worklist of a user contains all the
tasks the user is expected to perform
w It includes tasks from all the projects she is

involved in

24

Gateways
§ Convegence/divergence point for the

sequence flow

Parallel (AND)

Exclusive (XOR)

Basic patterns
§ Sequence
§ Parallel split
§ Synchronization
§ Exclusive choice
§ Merge
§ Multiple choice

Sequence
§ An activity is enabled after the

completion of a preceding activity
– A.k.a. serialization

w It is the essential building block
w Can be used to build a sequence of

consecutive steps that take place, in turn,
one after the other

Sequence
§ The flow arc determines the order of

execution

Sequence - Semantics
§ The token flows through the diagram
§ Following the arcs
§ Stopping at actions

w Performing actions

Parallel split
§ From a certain point on a thread

diverges into several parallel threads
that can be executed concurrently
w A.k.a. fork, AND-split

§ Represents both
w Actions taking place at the same time

(concurrently)
w Actions performed in no specific order

– Possibly even serialized

Parallel split

fork

§ When the token reaches the fork it is
cloned as many times as the outgoing
arcs

Parallel split - Semantics

Synchronization
§ Define a synchronization point or

rendezvous
w A.k.a. join
w After a group of actions have been

executed in parallel or independently
§ Before proceeding with further

activities all the previous ones must be
completed

Synchronization
join

Synchronization- Semantics
§ When one token per incoming arc has

reached the join, they are merged into
a single token

Exclusive choice
§ A diversion of the thread into several

alternative paths
w Exactly one alternative is picked and

followed during execution
w A.k.a. conditional routing, decision

§ Each path is characterized by a guard
w Represents a condition that, when true,

enable the execution of the
corresponding path

Exclusive choice

The token getting to the decision arc whose
condition is evaluated as true

Exclusive choice – Semantics

Merge
§ The convergence of two or more

threads into a single one
w Any incoming thread activates the

outgoing path
§ Beware: no synchronization is

performed

Merge

Multiple choice
§ All paths with a true condition guard

are followed
w If no path is chosen, there is an abnormal

stop to the flow

Example

42

Pools and Lanes
§ A Pool represents a Participant (business

entity) in a Process
§ A Lane is sub-partition of a Pool
§ Example

w Customer
w Enterprise

– Manufacturing
– Accounting

§ Sequence Flow cannot cross the boundaries
of a pool

43

Pools and Lanes
§ A Pool represents a Participant

(business entity) in a Process
§ A Lane is sub-partition of a Pool

Pool and Lanes example

Readability Elements

Readability elements include:
Text Annotations
Links

Text Annotation

Allow the user to attach notes to a
model with explanations for clarity.

Annotation

Links

Allow the user to cut a process that
has become too long to read easily,
and simply continue the process on
another line.

Throw Link Catch Link

Structured processes
§ Each action has exactly one input flow

and one output flow

§ Fork and Join must be coupled

§ Decision and Merge must be coupled

Prescriptive vs. Descriptive
§ Initial goal: understand the procedure

currently in place
w Descriptive

§ Next goal: provide guidance for
defining IS-supported procedures
w Prescriptive

§ Advice: avoid unnecessary constraints

ADVANCED PATTERNS
BPMN

Complex structures
§ Cycles / loops
§ Arbitrary cycles
§ Implicit termination
§ Complex activities
§ Multiple choice

Structured Loop
§ One or more activities are repeated

until a specific condition become true
§ Realized by means of decision and

merge nodes
w First a merge node
w Then a condition

Loop - Repeat

do {
read_item();
pick_item();

} while(more_items);

Loop - Semantics

do {
read_item();
pick_item();

} while(more_items);

Loop - While

while(more_items){
read_item();
pick_item();

}

Arbitrary cycles
§ Loop that is unstructured or not block

structured.
§ That is, the looping segment of the

process may allow more than one
entry or exit point.

§ Important for the visualization of
valid, but complex, looping situations
in a single diagram

Arbitrary cycles

PROCESS MODELING NOTATIONS AND WORKFLOW PATTERNS

12

Figure 24: WP #10: Synchronizing Merge—Business Process Diagram

Activity Diagram
The UML Activity Diagram uses a join node for the Synchronizing Merge pattern (see Figure 25). The join
node with a condition expression that controls how many Tokens must arrive from the incoming control
flow before a Token will continue through the outgoing control flow.

Figure 25: WP #10: Synchronizing Merge—Activity Diagram, Variation 1

Comparison
As with the previous pattern, the comparison between the two notations is basically the same as for the
other types of flow control mechanism used in the workflow patterns. A Business Process Diagram uses
variations of a diamond shape to indicate the appropriate behavior. An Activity Diagram uses either a
diamond or a bar for flow control. The merits of these mechanisms have been discussed above.

STRUCTURAL PATTERNS
The two patterns in this group cover such behavior as looping and the independence of separate process
paths.

WORKFLOW PATTERN: ARBITRARY CYCLES
The Arbitrary Cycle pattern is a mechanism for allowing sections of a process to be repeated—it is a loop.
This pattern allows looping that is unstructured or not block structured. That is, the looping segment of
the process may allow more than one entry or exit point. This pattern is important for the visualization
of valid, but complex, looping situations in a single diagram. Notations that allow only block structured
loops would not be able to display the entire process in a single diagram or process level or would dis-
tribute the behavior in a non-intuitive manner.

Business Process Diagram
It is possible to create an Arbitrary Cycle pattern within a Business Process Diagram by connecting Se-
quence Flow to upstream activities (see Figure 26).

Figure 26: WP #11: Arbitrary Cycles—Business Process Diagram

Implicit termination
§ A specific path of a process can be

concluded without other parallel paths
be required to end as well.

§ The normal case require the whole
process to end when any end node is
reached.

Implicit termination - semantics

Only one path
is terminated

Explicit termination - semantics

ALL path are terminated.
i.e. the whole process
instance is terminated

Implicit decision
§ Convergence of two or more branches

such that the first activation of an
incoming branch results in the
subsequent activity being triggered
while subsequent activations of
remaining incoming branches are
ignored.

Implicit decision semantics

Implicit vs. explicit decision

Complex activity / Subprocess
§ Represent a complex (sub-)process in

a single action
w Call behavior

§ The contents of the complex action
can be represented in an additional
diagram

Expanded sub-process
§ An expanded process can be

embedded
w Useful to provide a context where

activties are executed

Implicit decision in subprocess

Ad-hoc

Marked with a ~
⬥ Models of weakly structured processes
The enclosed activities can be:
⬥ executed in any order
⬥ executed several times
⬥ possibly skipped

Repeating

Used to repeat behaviour, such as
multiple launches of the same task, or
repeating the same task multiple
times.

Repeating

Multi instance activity
Activity to be performed many times with
different data sets.
⬥ The value of the loop condition attribute

determines the number of times that the
Activity is performed.

⬥ The individual instances of a Multi-Instance
Activity might occur in parallel or in sequence.

EVENTS

71

Events
§ Something that happens during a

process
w Used to start or end a process,

and to manage specific actions
during a workflow

Start EndIntermediate

Timers

Used to launch periodic activities, or
to ensure that an a happens after a
specified deadline

Start timer
§ The timer can be specified as

w A fixed time / date
w An interval
w A recurring interval

Intermediate timer semantics
§ When the token arrives at the

intermediate timer event a timer is
started

§ When it expires the token
is released

Messages and Message Flow
Used to transfer actions or data from one
pool or process to another and to correlate
related processes.

Throw Message Catch Message

A message is a direct communication
between two business participants. These
participants must be in separate Pools

Deferred choice
§ A divergence point in a process where

one of several possible branches
should be activated.

§ The actual decision on which branch is
activated is made by the environment
and is deferred to the latest possible
moment.

§ Uses the event-based gateway

Deferred choice

Event based
gateway

Message coordination
Multiple tenderers

can participate

Signals

Used to send data to multiple
activities simultaneously.

Throw Signal Catch Signal

Signals are broadcast communications from a business
participant or another Process. Signals have no specific target
or recipient - i.e. all Processes and participants can see the
signal and it is up to each of them to decide whether or not to
react.

Signals

Synchronous vs. Asynchronous

Messages and signals shown above
are received when a process decides
to wait for them
⬥ Sender and receiver “at the same time”

(synchronously) are ready for the signal
or message exchange

In some cases events occur at
unpredictable or unexpected times
⬥ They must be handled asynchronously

Boundary events
§ Events on the boundary of an activity

catch asynchronous events occurring
during the execution of the activity
w Interrupting
w Non-interrupting

Boundary timeout
§ The token triggers a timer
§ Upon expiration the token is sent out

via the boundary outgoing flow
w That interrupts the activity

Non-interrupting timeout
§ The token triggers a timer
§ Upon expiration the token is cloned

and sent out via the boundary
outgoing flow in a parallel thread
w Activity completion sets the timer off

Boundary message
§ The activity takes place as usual
§ If and when a message is received the

activity is stopped and the alternative
path is followed

Error Events

When an error occurs the task stops
⬥ The Error Intermediate Event can only be

used as boundary

Exception management

▪ Used to define behaviour when the
system encounters a technical error.

Event sub-process

Handle asynchronous events that
occur during any activity in the
enclosing context

Tools

Online

▪ https://academic.signavio.com

▪ BPMN.io
▪ https://bpmn.io

Applications
▪ Camunda Modeler

▪ https://camunda.com/download/modeler/

References
§ Camunda, BPMN Modeling Reference

w https://camunda.com/bpmn/reference/
§ N. Russell et al., Workflow Control-

Flow Patterns - A Revised View
w http://www.workflowpatterns.com/docu

mentation/documents/BPM-06-22.pdf
§ Workflow Patterns web site

w http://www.workflowpatterns.com

